Tìm x :
\(3^{x+1}\) + \(3^{x+2}\) = 324
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn làm nhanh giúp mình nhá . Mình cần gấp lắm , ai trả lời nhanh nhất mình sẽ cho đúng .Ko cần làm đúng đâu nhưng phải lợp lí.
3^x + 3^x+1 =324
3^x + 3×3 ^x =324
4×3 ^x = 324
3^x = 81 = 324
X =4
X= 4
3x + 3x+1 = 324
3x + 3x.3 = 324
3x.(1 + 3) = 324
3x.4 = 324
3x = 324 : 4
3x = 81
3x = 34
<=> x = 4
\(3^x+3^x.3=324\)
\(3^x.\left(1+3\right)=324\)
\(3^x.4=324\)
\(3^x=324:4\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
3x + 3x+1 = 324
3x .1+ 3x.3 = 324
3x.(1+3) = 324
3x .4 = 324
3x = 324:4
3x = 81
81=3 .3.3.3 =34 => 81 =34=> x =4
Vậy x=4
<=> 3^x(3+1)=324 <=> 3^x * 4 = 324 <=> 3^x = 81 <=> 3^x = 3^4 <=> x=4
Vậy x=4
1.8100
2. 34 x 18 + 18 x 66
= 18 x ( 34 + 66)
= 18 x 100 = 1800
3. X × ( 8 + 12) = 160 + 20 × 12
= X x 20 = 160 + 240
= X x 20 = 400
X = 400 : 20 = 20
4. X x 12 - X x 2 = 2020
(12 - 2) x X = 2020
10 x X = 2020
X = 2020 : 10 = 202
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
\(3^{x+1}\) + \(3^{x+2}\) = 324
\(3^x\) . 3 + \(3^x\) . 9 = 324
\(3^x\) . ( 3 + 9 ) = 324
\(3^x\) . 12 = 324
\(3^x\) = 324 :12
\(3^x\) = 27
\(3^x\) = \(3^3\)
x = 3
3x+1 + 3x+2 = 324
3x . 3 + 3x . 32 = 324
3x . ( 3 + 32 ) = 324
3x . 12 = 324
3x = 324 : 12
3x = 27
3x = 33
=> x = 3
Vậy x = 3