K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Ta có

|x−2010|\(\ge\)0 với mọi x

=>2012-|x−2010|\(\ge\)2012 với mọi x

=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x

Dấu bằng xảy ra <=>|x−2010|=0

<=>x-2012=0

<=>x=2012

Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012

28 tháng 10 2023

a: \(\left(x-2\right)^2>=0\)

\(\left|y-x\right|>=0\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

=>A>=3 với mọi x,y

Dấu = xảy ra khi x-2=0 và y-x=0

=>x=2=y

b: \(\left|x+5\right|>=0\)

=>\(\left|x+5\right|+5>=5\)

=>B>=5 với mọi x

Dấu = xảy ra khi x+5=0

=>x=-5

c: \(\left|x-2010\right|>=0\)

=>\(-\left|x-2010\right|< =0\)

=>\(-\left|x-2010\right|+2012< =2012\)

=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)

Dấu = xảy ra khi x=2010

28 tháng 10 2023

a) Ta có:

\(A=\left(x-2\right)^2+\left|y-x\right|+3\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

\(\Rightarrow x=y=2\)

Vậy: \(A_{min}=3\Leftrightarrow x=y=2\) 

b) Ta có:

\(B=\left|x+5\right|+5\)

Mà: \(\left|x+5\right|\ge0\)

\(\Rightarrow B=\left|x+5\right|+5\ge5\)

Dấu "=" xảy ra:

\(x+5=0\Rightarrow x=-5\)

Vậy: \(B_{min}=5\Leftrightarrow x=-5\)

c) Ta có:

\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)

Mà: \(\left|x-2010\right|\ge0\)

\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)

Dấu "=" xảy ra khi:

\(x-2010=0\Rightarrow x=2010\)

Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)

AH
Akai Haruma
Giáo viên
12 tháng 6 2021

Lời giải:
Để $M$ nhỏ nhất thì $2011-6033:(x-2010)$ nhỏ nhất. Giá trị này chính bằng $0$

Khi đó: 

$2011-6033:(x-2010)=0$

$x-2011=6033:2011=3$

$x=2014$

$M=\frac{2011-2011}{2009\times 2010\times 2013}=0$

 

17 tháng 2 2019

đk : \(\left|x-2010\right|\ne2012\)

\(B=\frac{2011}{2012-\left|x-2010\right|}\)

có : \(2011>0\)

để B đạt gtnn thì 2012 - |x - 2010| lớn nhất

mà |x - 2010| > 0

=> 2012 - |x - 2010| = 1

=> |x - 2010| = 2011  

=> x - 2010 = 2011 hoặc x - 2010 = -2011

=> x = 4021 hoặc x = -1

NV
12 tháng 12 2020

Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)

28 tháng 8 2018

Để M có giá trị nhỏ nhất thì

2012-2011:(2010-x)=1 

Suy ra : 2011 : (2010-x) =2011

                         2010 -x   = 1

                                  x=   2009

23 tháng 12 2017

Với \(\forall x\) ta có :

\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+1\)

Lại có : \(\left|x-2010\right|\ge0\)

\(\Leftrightarrow\left|x-2010\right|+1\ge1\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)

\(\Leftrightarrow x=2010\)

Vậy \(A_{Min}=1\Leftrightarrow x=2010\)

23 tháng 12 2017

Mà t nhớ bài sai CTV đc phép xóa thì phải :v

18 tháng 1 2017

Ở giữa là nhân hay cộng vậy bạn.

Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.

Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)

và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)

19 tháng 1 2017

Đề không rõ ràng này tốt nhất thôi A à.

tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.

A mới đưa ra được (.);(+) còn chia(/) và (-) nữa 

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

23 tháng 12 2017

ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

Áp dụng bđt chưa dấu giá trị tuyệt đó ts có

\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)

mà \(\left|x-2011\right|\ge0\)

Cộng hết vào => B\(\ge2\)

dấu = xảy ra <=> x=2011