Tìm GTLN của: y=\(\dfrac{2x+1}{x-1}\)+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
a.
\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)
\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))
\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)
b.
\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)
\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)
\(\Leftrightarrow11y^2+2y-9\le0\)
\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)
c.
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)
\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)
\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)
Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:
\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)
\(\Leftrightarrow y^2+8y-36\le0\)
\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
Câu 2:
ĐKXĐ: x<>0
\(B=\dfrac{-x^2-x-1}{x^2}\)
\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)
\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)
\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)
Dấu '=' xảy ra khi 1/x+1/2=0
=>1/x=-1/2
=>x=-2
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)
a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2
Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔ x = - 1,5
Vậy Bmin= 4,2 ⇔ x= -1,5
b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)
Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)
Vậy Cmax = \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)
\(y=\dfrac{2x+1}{x-1}+5=\dfrac{2x-2+3}{x-1}+5=\dfrac{2x-2}{x-1}+\dfrac{3}{x-1}+5=7+\dfrac{3}{x-1}\)
Để \(max_y\) thì \(\dfrac{3}{x-1}\) nhỏ nhất và \(x-1>0\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Khi đó \(max_y=\dfrac{2.2+1}{2-1}+5=10\)
bn có chắc chắn đề như thế này ko