K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

đề ngu vcl x=y=1 thì x+1/y<1 à

19 tháng 3 2017

cái này giống này - Here. Mỗi tội bài này Min=22 khi x=y=1/2

2 tháng 7 2018

Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :

\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)\(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)

\(P_{MIN}=196."="\)\(x=y=z=\dfrac{1}{3}\)

2 tháng 7 2018

bunhia đc k bn

30 tháng 7 2021
29 tháng 8 2021

Giá trị nhỏ nhất là 17/4
 

 

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$

Áp dụng BĐT AM-GM tiếp:

$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$

$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$

$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$

$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$

Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$

4 tháng 8 2021

còn cách làm khác không ạ?

 

29 tháng 8 2021

Giá trị lớn nhất là 2/17

29 tháng 8 2021

\(\dfrac{2}{17}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$