Cho\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh:\(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=3abc\Rightarrow\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}=3\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=9\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=9\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\cdot3=9\)
Vậy \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\).
áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)
tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)
suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
suy ra dpcm
dau = xay ra khi a=b=c
\(\dfrac{1}{a^3}+a\ge2\sqrt{\dfrac{a}{a^3}}=\dfrac{2}{a}\) ; \(\dfrac{1}{b^3}+b\ge\dfrac{2}{b}\) ; \(\dfrac{1}{c^3}+c\ge\dfrac{2}{c}\)
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+a+b+c\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (1)
Lại có \(\dfrac{4a}{a^4+1}\le\dfrac{4a}{2\sqrt{a^4}}=\dfrac{4a}{2a^2}=\dfrac{2}{a}\)
Tương tự \(\dfrac{4b}{b^4+1}\le\dfrac{2}{b}\) ; \(\dfrac{4c}{c^4+1}\le\dfrac{2}{c}\)
\(\Rightarrow4\left(\dfrac{a}{a^4+1}+\dfrac{b}{b^4+1}+\dfrac{c}{c^4+1}\right)\le2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (2)
Từ (1),(2)\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+a+b+c\ge4\left(\dfrac{a}{a^4+1}+\dfrac{b}{b^4+1}+\dfrac{c}{c^4+1}\right)\)
Dấu "=" xảy ra khi a=b=c=1
Đặt vế trái BĐT cần chứng minh là P
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)
Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)
\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:
\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)
Dấu ''='' xảy ra khi và chỉ khi a=b=c
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
=> (bc+ac+ab)(a+b+c)=abc
=> abc+b2c+bc2+a2c+abc+ac2+a2b+ab2+abc=abc
=>abc+b2c+bc2+a2c+abc+ac2+a2c+ab2+abc-abc=0
=>(a2c+2abc+b2c)+(a2b+ab2)+(ac2+bc2)=0
=>c(a+b)2+ab(a+b)+c2(a+b)=0
=>(a+b)[c(a+b)+ab+c2]=0
=>(a+b)(ac+bc+ab+c2)=0
=>(a+b)[a(c+b)+c(b+c)]=0
=>(a+b)(c+b)(a+c)=0
=> a+b=0, c+b=0, a+c=0
nếu a+b=0=>a=-b
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{-b^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{c^3}\)(1)
và \(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{-b^3+b^3+c^3}=\dfrac{1}{c^3}\) (2)
từ (1) và (2) suy ra đpcm