K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

ta có :

\(S=x+\dfrac{\dfrac{16}{9}}{4x}+\dfrac{\dfrac{11}{9}}{4x}+y+\dfrac{\dfrac{16}{9}}{4y}+\dfrac{\dfrac{11}{9}}{4y}\)

\(S=\left(x+\dfrac{\dfrac{16}{9}}{4x}\right)+\left(y+\dfrac{\dfrac{16}{9}}{4y}\right)+\dfrac{\dfrac{11}{9}}{4x}+\dfrac{\dfrac{11}{9}}{4y}\)

Áp dụng BĐT Cauchy ta có

\(S\ge2\sqrt{\dfrac{16}{36}}+2\sqrt{\dfrac{16}{36}}+\dfrac{11}{36}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu ta có

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{\dfrac{4}{3}}\)

\(\Rightarrow S\ge\dfrac{8}{3}+\dfrac{11}{12}=\dfrac{43}{12}\)

Vậy Min S = \(\dfrac{43}{12}\) khi x = y = \(\dfrac{2}{3}\)

22 tháng 12 2017

\(S=x+y+\dfrac{3}{4x}+\dfrac{3}{4y}\)

\(S=\dfrac{27}{16}x+\dfrac{3}{4x}+\dfrac{27}{16}y+\dfrac{3}{4y}-\dfrac{11}{16}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{27}{16}x.\dfrac{3}{4x}}+2\sqrt{\dfrac{27}{16}y.\dfrac{3}{4y}}-\dfrac{11}{16}.\dfrac{4}{3}\)

\(S\ge2.\dfrac{9}{8}+2.\dfrac{9}{8}-\dfrac{11}{16}.\dfrac{4}{3}\)

\(S\ge\dfrac{43}{12}\)

GTNN của S là \(\dfrac{43}{12}\Leftrightarrow x=y=\dfrac{2}{3}\)

21 tháng 12 2017

Áp dụng bđt 1/a + a/b >= 4/a+b với a,b > 0 và bđt côsi thì :

S >= x+y+3 . 4/4x+4y = x+y + 3/x+y = [x+y + 16/9(x+y)] + 11/9(x+y)

>= \(2\sqrt{\left(x+y\right).\frac{16}{9\left(x+y\right)}}\)+ 11/(9.4/3) =  8/3 + 11/12 = 43/12

Dấu "=" xảy ra <=> x=y=2/3

Vậy Min S = 43/12 <=> x=y=2/3

k mk nha

16 tháng 1 2020

\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)

\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge x+y+\frac{3}{x+y}\)

\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)

Tại \(x=y=\frac{2}{3}\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

22 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(\frac{1}{4x^2+y^2+z^2}=\frac{1}{3x^2+x^2+y^2+z^2}\le\frac{1}{3x^2+3}\)

Viết lại BĐT cần chứng minh như sau:

\(\frac{1}{3x^2+3}+\frac{1}{3y^2+3}+\frac{1}{3z^2+3}\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\le\frac{3}{2}\)

Ta có BĐT phụ \(\frac{1}{x^2+1}\le-\frac{1}{2}x+1\)

\(\Leftrightarrow-\frac{x\left(x-1\right)^2}{2\left(x^2+1\right)}\ge0\) *luôn đúng*

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{y^2+1}\le-\frac{1}{2}y+1;\frac{1}{z^2+1}\le-\frac{1}{2}z+1\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le-\frac{1}{2}\left(x+y+z\right)+3=-\frac{3}{2}+3=\frac{3}{2}=VP\)

Xảy ra khi x=y=z=1

22 tháng 7 2017

Cho mih hỏi bđt phụ đó là sao, có thể CM giùm mih đc hok

7 tháng 5 2017

1/x +1/y >= 4 / x+y  

               >=4 :4/3

                >=3

F >= 4/3 +3

F>= 13/3 

Dau = xay ra <=> x=y=2/3