K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

áp dụng bất đẳng thức Bun-nhi-a ta có:

\(A^2\le3\left(a+b+c+ab+bc+ac\right)\le3\left(a+b+c+\frac{\left(a+b+c\right)^2}{3}\right)=4\)

=> A\(\le\)2(dpcm)

13 tháng 2 2019

Áp dụng BĐT Cô-si:

\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)

Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

NV
20 tháng 6 2020

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)

31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

22 tháng 7 2019

3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có

\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)

TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)

=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)

Dấu bằng xảy ra khi a=b=c

22 tháng 7 2019

cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

Đặt biểu thức vế trái là $P$

Hiển nhiên $a,b,c$ không thể cùng đồng thời bằng $0$

Nếu trong 3 số $a,b,c$ có 2 số bằng $0$ thì $ab+bc+ac=0$ (trái giả thiết)

Nếu trong 3 số $a,b,c$ có 1 số bằng $0$. Giả sử đó là $a$

Khi đó:

$P=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}\geq 2$ theo BĐT AM-GM $(*)$

Nếu cả 3 số $a,b,c$ đều lớn hơn $0$

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}=\frac{b+c}{a}.1\left(\frac{\frac{b+c}{a}+1}{2}\right)^2\leq \left(\frac{a+b+c}{2a}\right)^2\Rightarrow \sqrt{\frac{b+c}{a}}\leq \frac{a+b+c}{2a}\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Hoàn toàn tương tự:

\(\sqrt{\frac{b}{a+c}}\geq \frac{2b}{a+b+c}; \sqrt{\frac{c}{a+b}}\geq \frac{2c}{a+b+c}\)

Cộng theo vế thì $P\geq 2 (**)$

Từ $(*); (**)\Rightarrow$ đpcm.

NV
13 tháng 5 2020

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)

Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ac}\) ; \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Rightarrow VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}\)

\(\Rightarrow VT\ge a+b+c=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

16 tháng 6 2017

\(\sqrt{a^2+ab+b^2}=\sqrt{\left(a+b\right)^2-ab}\ge\sqrt{\left(a+b\right)^2-\dfrac{\left(a+b\right)^2}{4}}=\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}\left(a+b\right)}{2}.\)

Tương tự

=> P \(\ge\dfrac{\sqrt{3}}{2}.2\left(a+b+c\right)=\sqrt{3}.\)

Vậy \(Pmin=\sqrt{3}\) khi a =b=c = 1/3