K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Ta có : \(3^1=3;3^2=9;3^3=27;3^4=81\)

Do đó : \(3^1+3^2+3^3+3^4=3+9+27+81=120\)

Nên \(3^1+3^2+3^3+3^4+3^5+...+3^{2012}=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)=120+3^4.120+...+3^{2008}.120=120.\left(1+3^4+...+3^{2008}\right)⋮120\) Vậy tổng \(S=3^1+3^2+3^3+...+3^{2012}⋮120\)

23 tháng 11 2017

Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ

=> tổng trên ko chia hết cho 120

k mk nha

23 tháng 11 2017

đề sai 

29 tháng 12 2016

tích tao nhé ahihi

29 tháng 12 2016

không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn

2 tháng 1 2017

Tổng 31 + 32 + 33 + 34 + 35 + … + 32012 không chia hết cho 120 vì tổng trên là một số lẻ, không chia hết cho một số chẵn.

2 tháng 1 2017

tổng trên không chia hết cho 120. Vì các số trên có tổng là số lẻ lên không chia hết cho số chẵn

10 tháng 8 2020

a)

Vì dãy A chứa toàn số \(⋮6\)

=> Tổng tất cả các số đều \(⋮6\)

=> \(A⋮6\)

b) Có: \(24;48;120;558⋮6\)

Nhg \(31⋮̸̸6\)

=> B ko chia hết cho 6

c) Có: \(C=16+33+8+27=84⋮6\)

Vậy dãy \(C⋮6\)

8 tháng 2 2022

\(A=3+3^2+3^3+...+3^{2012}\\ A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\\ A=120+...+3^{2008}.120\\ A=120.\left(1+...+3^{2008}\right)⋮120\)

8 tháng 2 2022

undefined

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

29 tháng 12 2022

bạn hình như viết sai đề

 

17 tháng 10 2021

\(B=3+3^2+3^3+...+3^{60}\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

24 tháng 12 2023

Số số hạng của B:

60 - 1 + 1 = 60 (số)

Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

B = (3 + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3⁵⁸ + 3⁵⁹ + 3⁶⁰)

= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3⁵⁸.(1 + 3 + 3²)

= 3.13 + 3⁴.13 + ... + 3⁵⁸.13

= 13.(3 + 3⁴ + ... + 3⁵⁸) ⋮ 13

Vậy B ⋮ 13

12 tháng 9 2021

\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)

18 tháng 10 2021

A=3 + 3+ 3+ ... + 32020 =3 (1 + 3) + 3(1 + 3) + ... + 32019 . (1 + 3)

=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4