Cho hình lập phương ABCDA'B'C'D' có đường chéo bằng 2√3 a. Tính diện tích mặt cầu nội tiếp hình lập phương đó:
A. 8πa^2
B. 4πa^2/3
C. 4πa^2
D. 8√3 πa^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(3AB^2=AC'^2=9a^2\) \(\Leftrightarrow AB^2=3a^2\Leftrightarrow AB=a\sqrt{3}\)
\(\Rightarrow V_{hlp}=AB^3=3a^3\sqrt{3}\) (đơn vị thể tích)
\(\overrightarrow{BD}.\overrightarrow{D'C}=\overrightarrow{BD}\left(\overrightarrow{D'D}+\overrightarrow{DC}\right)=\overrightarrow{BD}.\overrightarrow{D'D}+\overrightarrow{BD}.\overrightarrow{DC}\)
\(=\overrightarrow{BD}.\overrightarrow{DC}=-\overrightarrow{DB}.\overrightarrow{DC}=-a\sqrt{2}.a.cos45^0=-a^2\)
Đáp án C
Nhận thấy chóp ACD′B′ có tất cả các
cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là
trọng tâm của tam giác AB′C′.
Chóp ACD′B′ nhận D′G là đường cao.
Xét tam giác AB′C′ có
Lời giải:
Gọi độ dài cạnh hình lập phương là $x$
Theo định lý Pitago ta có:
\(B'D'^2=A'B'^2+A'D'^2=x^2+x^2=2x^2\)
Độ dài đường chéo:
\(BD'=\sqrt{BB'^2+B'D'^2}=\sqrt{x^2+2x^2}=\sqrt{3}x=2\sqrt{3}a\)
\(\Rightarrow x=2a\)
Đường cầu nội tiếp hình lập phương là đường cầu có bán kính bằng một nửa độ dài cạnh lập phương
\(\Rightarrow r=\frac{x}{2}=a\)
Do đó diện tích mặt cầu cần tìm là: \(S_{c}=4\pi r^2=4\pi a^2\)
Đáp án C