Bài 1: Chứng minh rằng ba đơn thức -1/4x3y4; -4/5x4y3, 1/2 xy không thể cùng có giá trị âm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)M=[-1]/4x^3y^4 . (3x^2y)^2`
`=>M=[-1]/4x^3y^4 . 9x^4y^2`
`=>M=([-1]/4 . 9)(x^3 . x^4)(y^4 . y^2)`
`=>M=[-9]/4x^7y^6`
`@` Bậc: `7 + 6 = 13`
`@` Biến: `x^7y^6`
`@` Hệ số: `[-9]/4`
__________________________________________
`b)` Thay `x =-1;y=2` vào `M` có:
`M=[-9]/4 . (-1)^7 . 2^6`
`M=[-9]/4 . (-1) . 64`
`M = 144`
1)
xét tích :
-3x4y . 5x2y3 = -15x6y4
vì x6 \(\ge\)0 ; y4 \(\ge\)0 nên -15x6y4 \(\le\)0
Vậy hai đơn thức này không thể cùng dương
xét tích :
\(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy\)
\(=\frac{1}{10}x^8y^8\)\(\ge\)0
Vậy ba đơn thức không thể cùng có giá trị âm
đây
suốt ngày hỏi
Đặt ba đơn thức lần lượt là a,b,c
ta có:a*b*c= (-1/2019.x^4.y.z^3).(108.x^3.y^2.z).(x^5.y.z^4)
d=(-1/2019.108.304).(x^4.x^3.x^5.y.y^2.y.z^3.z.z^4)
d=-32832.x^12.y^4.z^8
=> d<0 với mọi x,y,z do x^12.y^4.z^8 luôn dương
=> đpcm
gọi 4 số tự nhiên liên tiếp lần lượt là : \(n;\left(n+1\right);\left(\cdot n+2\right)\left(n+3\right)\)
ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\) (1)
đặt \(n^2+3n=t\) \(\left(t\in N\right)\) thì (1) = \(t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)=\left(n^2+3n+1\right)\)
\(\Rightarrow dpcm\)
\(TH1:\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
Vậy ....
Sửa đề: Cho 3 đơn thức: \(M=-5xy;N=11xy^2;P=\dfrac{7}{5}x^2y^2\). Chứng minh 3 đơn thức này không thể cùng dương.
Bài làm: Cho 3 đơn thức: M = -5xy; N = 11xy^2; P = 7/5x^2y^2. Chứng minh 3 đơn thức này không thể cùng dương - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
- Nếu y dương hay âm thì y2, y4 luôn dương nên ta không cần xét.
- Nếu x dương thì đơn thức A dương nhưng B âm.
- Nếu x âm thì đơn thức B dương nhưng A âm.
-> Vậy hai đơn thức không thể cùng có giá trị dương.
Ta có :\(\left(-\dfrac{1}{4}x^3y^4\right)\left(-\dfrac{4}{5}x^4y^3\right)\left(\dfrac{1}{2}xy\right)\)
\(=\left(-\dfrac{1}{4}\times\dfrac{-4}{5}\times\dfrac{1}{2}\right)\left(x^3x^4x\right)\left(y^4y^3y\right)\)
\(=\dfrac{1}{10}x^8y^8\ge0\) (1)
Giả sử \(-\dfrac{1}{4}x^3y^4;-\dfrac{4}{5}x^4y^3;\dfrac{1}{2}xy\) có cùng giá trị âm thì \(\left(-\dfrac{1}{4}x^3y^4\right)\left(-\dfrac{4}{5}x^4y^3\right)\left(\dfrac{1}{2}xy\right)< 0\) (2)
(1) và (2) mâu thuẫn
Nên \(-\dfrac{1}{4}x^3y^4;-\dfrac{4}{5}x^4y^3;\dfrac{1}{2}xy\) không cùng có giá trị âm