K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1)Tìm x,y biết: \(\dfrac{2x}{3}=\dfrac{5y}{4}\) và x + y = \(\dfrac{1}{2}\) B2) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa ): 1/ \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) 2/ \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) B3) Cho x và y là 2 đại lg tỉ lệ thuận, x1 và x2 là 2 giá trị khác nhau của x, y1 và y2 là 2 giá trị tương ứng của y. Tính x1, biết y1 = -3; y2...
Đọc tiếp

B1)Tìm x,y biết:

\(\dfrac{2x}{3}=\dfrac{5y}{4}\) và x + y = \(\dfrac{1}{2}\)

B2) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa ):

1/ \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) 2/ \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

B3) Cho x và y là 2 đại lg tỉ lệ thuận, x1 và x2 là 2 giá trị khác nhau của x, y1 và y2 là 2 giá trị tương ứng của y. Tính x1, biết y1 = -3; y2 = -2; x2 = 5.

B4) Tìm giá trị lớn nhất và nhỏ nhất(nếu có) các biểu thức sau:

a) P = 3,7 + |4,3 - x| b) Q = 5,5 - |2x - 1,5|

B5) Cho △ABC. Trên tia đối của tia CB lấy điểm M sao cho CM = CB. Trên tia đối của tia CA lấy điểm D sao cho CD = CA.

a) CMinh △ABC = △DMC

b) CMinh MD // AB

c) Gọi I là 1 điểm nằm giữa A và B. Tia IC cắt MD tại điểm N. So sánh độ dài các đoạn thẳng BI và NM, IA và ND

~~ Giúp mik nha mn, mik gấp liếm !!!!( B5 các bạn k cần vt GT, KL đâu nha)

1

Bài 1: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{x+y}{\dfrac{3}{2}+\dfrac{4}{5}}=\dfrac{0.5}{2.3}=\dfrac{5}{23}\)

Do đó: x=15/46; y=4/23

Bài 2: 

1: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)

Do đó: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

 

14 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

14 tháng 10 2021

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

23 tháng 9 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)

b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)

Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

4 tháng 10 2023

Ta đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(a=b\times k\) ; \(c=d\times k\) 

a) Ta có:  \(\dfrac{a}{b}=\dfrac{b\times k}{d\times k}=\dfrac{b}{d}\)  (1)

=> \(\dfrac{a+b}{c+d}=\dfrac{b\times k+b}{d\times k+d}=\dfrac{b\times\left(k+1\right)}{d\times\left(k+1\right)}=\dfrac{b}{d}\) (2)

Từ (1),(2) => đpcm

b)

\(\dfrac{a+b}{a}=\dfrac{b\times k+b}{b\times k}=\dfrac{b\times\left(k+1\right)}{b\times k}=\dfrac{k+1}{k}\) (1)

\(\dfrac{c+d}{c}=\dfrac{d\times k+d}{d\times k}=\dfrac{d\times\left(k+1\right)}{d\times k}=\dfrac{k+1}{k}\) (2)

Từ (1),(2) => đpcm

 

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3}{d^3}\)

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\)

4 tháng 4 2021

Cách 1:

Ta xét tích a(c-d) và c(a-b)

Ta có: a(c-d)=ac-ad (1)

           c(a-b)=ac-bc(2)

Ta lại có \(\dfrac{a}{c}=\dfrac{c}{d}\)=>ad=bc (3)

Từ (1), (2), (3) ta có a(c-d)=c(a-d). Do đó \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

Cách 2:

 Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k thì a=bk, c=dk. 

Xét \(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

Xét \(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

Cách 3: Ta có

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Aps dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a-b}{c-d}\)

=>\(\dfrac{a}{c}=\dfrac{a-b}{c-d}=>\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)

\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

hay \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)