Cho biểu thức (x-2)^10
a) Khai triển biểu thức trên theo công thức nhị thức niu - tơn
b) tìm hệ số của số hạng chứa x^8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Điều kiện xác định: .
Ta có: .
.
Khi đó nhị thức Niu-tơn có số hạng tổng quát:
.
Số hạng chứa x 5 có giá trị k thỏa mãn: 14 - 3k = 5 => k = 3.
Vậy hệ số của số hạng chứa x 5 là: .
Ta có:
Chọn x=1. Ta có tổng hệ số bằng:
Lại có:
Số hạng không chứa x suy ra
Do đó số hạng không chứa x là:
Chọn D.
a, Số hạng trong khai triển có dạng là :
\(T_{k+1}=C_{10}^k.x^{10-k}.\left(-2\right)^k\)
b, Số hạng chứa \(x^8\) \(\Leftrightarrow x^{10-k}=x^8\)
\(\Leftrightarrow10-k=8\)
\(\Leftrightarrow k=10-8\)
\(\Leftrightarrow k=2\)
Hệ số của số hạng chứa \(x^8\)là :
\(T_3=C_{10}^2.\left(-2\right)^2=180\)