Cho tam giác ABC có số đo các góc A, B tỷ lệ nghịch với các số 2;3 và số đo các góc B,C tỷ lệ thuận với 1;2. Tìm số đo các góc của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dtsbn:
\(2\widehat{A}=3\widehat{B};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\\ \Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^0}{9}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=40^0\\\widehat{C}=80^0\end{matrix}\right.\)
gọi số đo ^A,^B,^C lần lượt là x,y,z.(x,y,z thuộc Z)
theo đề bài, ta có:
3x=8y=6z=x+y+z=180
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x.3=y.8=z.6=x+y+z=3+8+6=180/58=288
=>x:13=288=>x=96
=>y:18=288=>y=36
=>z:16=288=>z=48
Cái còn lại thì bạn hãy nhập đường link này nhé
HELP ME PLS! Cho tam giác ABC có 5C = A+B. Tính số đo các góc A, B ,C biết A:B= 2:3 câu hỏi 219280 - hoidap247.com
gọi x,y,z là số đo các góc trong tam giác ABC tỉ lệ nghịch với 6; 10; 15.
theo đề cho ta có:
6x=10y=15z hay 6x30=10y30=15z30⇒x5=y3=z2
và x+y+z= 180
x5=y3=z2=x+y+z5+3+2=18010=18
x=18.5=90
y=18.3=54
z=18.2=36
vậy số đo các góc trong tam giác ABC lần lượt là 90;54;36
tìm bội chung nhỏ nhất (3,4,6)=12
Ta có A/4=A/3=A/2 và A+B+C=180 độ
Xét......
Ta có:A/4=B/3=C/2=A/4+B/3+C/2=?
Ta có các số đo tam giác đó tỉ lệ nghịch với 3, 4, 6
\(\Rightarrow\frac{\widehat{A}}{\frac{1}{3}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}\)
\(ADTCDTSBN:\widehat{\frac{A}{\frac{1}{3}}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{180^o}{\frac{3}{4}}=240\)
\(\Rightarrow\widehat{\frac{A}{\frac{1}{3}}}=240\Rightarrow\widehat{A}=80^o\)
\(\widehat{\frac{B}{\frac{1}{4}}}=240\Rightarrow\widehat{B}=60^o\)
\(\widehat{\frac{C}{\frac{1}{6}}}=240\Rightarrow\widehat{C}=40^o\)
Vậy \(\widehat{A}=80^o;\widehat{B}=60^o;\widehat{C}=40^o\)
đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg
theo đề bài ta có :
A/3 = B/4 = C/5
=> A+B+C/3+4+5 = A/3=B/4=C/5
A+B+C = 180
=> 180/12 = A/3 = B/4 = C/5
=> 15 = A/3 = B/4 = C/5
=> A = 45 ; B = 60; C = 75
Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!
vì số đo góc A;B;C lần lượt tỉ lệ nghịch với 3;4;6 nên :
3A = 4B = 6C
=> 3A/12 = 4B/12 = 6C/12
=> A/4 = B/3 = C/2
=> A+B+C/2+3+4 = A/4 = B/3 = C/2
A+B+C = 180
=> 180/9 = A/4 = B/3 = C/2
=> 20 = A/4 = B/3 = C/2
=> A = 80; B = 60; C = 40
Theo đề bài:
\(\left\{{}\begin{matrix}2\widehat{A}=3\widehat{B}\\\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\\\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}\end{matrix}\right.\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^o}{9}=20^o\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=20^o.3=60^o\\\widehat{B}=20^o.2=40^o\\\widehat{C}=20^o.4=80^o\end{matrix}\right.\)