ba anh em An, Bảo, Chi theo thứ tự học lớp 8, 7, 6 và có điểm trung bình cuối học kì là 8,0 ; 8,4 ; 7,2. Ngày đầu năm mới bà đưa cho An 85 chiếc kẹo để chia cho ba anh em tỉ lệ nghịch với lớp học(nếu điểm trung bình như nhau) và tỉ lệ thuận với điểm trung bình đạt được(nếu lớp học như nhau) An phải chia như thế nào?(mỗi người bao nhiêu cái kẹo)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Điểm trung bình môn toán kì 1 là;
\(\dfrac{9+6+7+8+8\cdot2+8.5\cdot3}{4+2+3}\simeq7,9\)
b: Gọi số điểm cần đạt được là x
Theo đề, ta có: x*2+7,9>=8,5*3
=>x*2>=17,6
=>x>=8,8
=>Cần ít nhất là 8,8 điểm
Sắp xếp lại theo thứ tự không giảm:
Bạn An: 6,5 6,8 7,3 8,0 8,0 8,7 9,2 9,5
Bạn Bình: 7,6 7,8 7,9 8,0 8,1 8,1 8,2 8,3
+ So sánh theo khoảng biến thiên:
Bạn An: \({R_1} = 9,5 - 6,5 = 3\)
Bạn Bình: \({R_2} = 8,3 - 7,6 = 0,7\)
Ta thấy \({R_1} > {R_2}\) nên bạn Bình học đều hơn
+ So sánh theo khoảng tứ phân vị:
Bạn An: n=8
\({Q_1} = \frac{{6,8 + 7,3}}{2} = 7,05\), \({Q_4} = \frac{{8,7 + 9,2}}{2} = 8,95\)
Khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = 8,95 - 7,05 = 1,9\)
Bạn Bình: n=8
\(Q{'_1} = \frac{{7,8 + 7,9}}{2} = 7,85\), \(Q{'_3} = \frac{{8,1 + 8,2}}{2} = 8,15\)
Khoảng tứ phân vị
\(\Delta {'_Q} = Q{'_3} - Q{'_1} = 8,15 - 7,85 = 0,3\)
=> Ta thấy \({\Delta _Q} > \Delta {'_Q}\) nên bạn Bình học đều hơn
+ So sánh theo phương sai hoặc độ lệch chuẩn
Bạn An: \(\overline x = 8\)
Ta có bảng:
Giá trị | Độ lệch | Bình phương độ lệch |
6,5 | -1,5 | 2,25 |
6,8 | -1,2 | 1,44 |
7,3 | -0,7 | 0,49 |
8 | 0 | 0 |
8 | 0 | 0 |
8,7 | 0,7 | 0,49 |
9,2 | 1,2 | 1,44 |
9,5 | 1,5 | 2,25 |
Tổng | 8,36 |
Phương sai là \({s_1}^2 = \frac{{8,36}}{8} = 1,045\)
Độ lệch chuẩn là \({s_1} = \sqrt {1,045} \approx 1,02\)
Bạn Bình: \(\overline x = 8\)
Ta có bảng:
Giá trị | Độ lệch | Bình phương độ lệch |
7,60 | -0,40 | 0,16 |
7,80 | -0,20 | 0,04 |
7,90 | -0,10 | 0,01 |
8,00 | 0,00 | 0,00 |
8,10 | 0,10 | 0,01 |
8,10 | 0,10 | 0,01 |
8,20 | 0,20 | 0,04 |
8,30 | 0,30 | 0,09 |
Tổng | 0,36 |
Phương sai là \({s_2}^2 = \frac{{0,36}}{8} = 0,045\)
Độ lệch chuẩn là \({s_2} = \sqrt {0,045} \approx 0,21\)
Ta thấy \({s_2} < {s_1}\) nên bạn Bình học đều hơn