K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)

17 tháng 10 2016

n=3

m=6

17 tháng 10 2016

n=3

m=6

the ma cg o bt

22 tháng 7 2022

không có cây trả lời

 

25 tháng 12 2022

+ Biểu hiện của tôn trọng sự thật là người sống ngay thẳng, thật thà, nhận lỗi khi có khuyết điểm.

+ Tôn trọng sự thật góp phần bảo vệ cuộc sống, bảo vệ giá trị đúng đắn, tránh nhầm lẫn, oan sai.

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

30 tháng 10 2016

không có giá trị của n

30 tháng 10 2016

Nếu n > 0 thì 3n .: 3 ; 3n\(\ge3\) mà 18 .3 => 3n + 18 .: 3 ; 3n + 18 > 3 => 3n + 18 là hợp số

=> n = 0.Thử 30 + 18 = 19 là số nguyên tố.Vậy n = 0

17 tháng 5 2017

Để phân số nhận giá trị nguyên 

=> 8n - 3 chia hết cho 4n + 2

8n + 4 - 4 - 3 chia hết cho 4n + 2

2(4n + 2) - 7 chia hết cho 4n + 2

=> 7 chia hết cho 4n + 2

=> 4n + 2 thuộc Ư(7) = {1 ; -1 ;7 ; -7}

Xét các giá trị trên , ta có bảng sau 

4n + 21-17-7
n-1/4 -3/4 5/4 -9/4
17 tháng 5 2017

Để 8n-3/4n+3 có giá trị là số nguyên thì 8n-3:4n+3

Ta có: 8n-3:4n+3

       =>8n+6-9:4n+3

       =>2(4n+3)-9:4n+3

   Mà 2(4n+3):4n+3

  =>9:4n+3

  =>4n+3 thuộc Ư(9)=-1;1;-3;3;-9;9

Nếu  4n+3=-1 thì n=-1

Nếu  4n+3=1 thì -0.5(loại)

Nếu  4n+3=-3 thì n=-1.5(loại)

Nếu  4n+3=3 thì n=0

Nếu 4n+3=-9 thì n=-3

Nếu 4n+3=9 thì n=1.5(loại)

Vậy n=-1;-3;0

7 tháng 1 2016

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

7 tháng 1 2016

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !