\(2sin^2x+sin2x=2\) ai giải giúp mình với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>sin2x+2*(1-cos2x)/2=2
=>sin2x-cos2x=1
=>căn 2*sin(2x-pi/4)=1
=>2x-pi/4=pi/4+k2pi hoặc 2x-pi/4=3/4pi+k2pi
=>x=pi/4+kpi hoặc x=pi/2+kpi
b: =>2*(1+cos2x)/2+1/2*sin2x-1/2(1-cos2x)=0
=>1+cos2x+1/2*sin2x-1/2+1/2cos2x=0
=>1/2*sin2x+3/2*cos2x=-1/2
=>sin(2x+a)=-cos(a)=cos(pi-a)
=>sin(2x+a)=sin(-pi/2+a)
=>2x+a=-pi/2+a+k2pi hoặc 2x+a=3/2pi-a+k2pi
=>x=-pi/4+kpi hoặc x=3/4pi-a+kpi
\(\Leftrightarrow2sinx.cosx-2cosx+2sin^2x+sinx-3=0\)
\(\Leftrightarrow2cosx\left(sinx-1\right)+\left(sinx-1\right)\left(2sinx+3\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2cosx+2sinx+3\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{3}{2\sqrt{2}}\end{matrix}\right.\)
\(\Leftrightarrow...\)
`2sin^2x+\sqrt3sin2x=3`
`<=>2. (1-cos2x)/2 + \sqrt3sin2x=3`
`<=>\sqrt3sin2x-cos2x=2`
`<=> \sqrt3/2 sin2x-1/2 cos2x=1`
`<=>sin (2x-π/6) = 1`
`<=> 2x-π/6=π/2+k2π`
`<=> x=π/3+kπ (k \in ZZ)`.
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)
\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}\cdot\cos2x+\dfrac{1}{2}\cdot\sin2x+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)+\sin\left(2x+\dfrac{\Pi}{6}\right)=\sqrt{2}\)
\(\Leftrightarrow2\cdot\dfrac{\sin\left(2x+\dfrac{\Pi}{3}+2x+\dfrac{\Pi}{6}\right)}{2}\cdot\dfrac{\cos\left(2x+\dfrac{\Pi}{3}-2x-\dfrac{\Pi}{6}\right)}{2}=\sqrt{2}\)
\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)\cdot\cos\left(\dfrac{\Pi}{6}\right)=2\sqrt{2}\)
\(\Leftrightarrow\sin\left(4x+\dfrac{\Pi}{2}\right)=\dfrac{4\sqrt{6}}{3}\)
hay \(x\in\varnothing\)
ĐK: \(x\ne\dfrac{\pi}{4}+k\pi;x\ne\dfrac{k\pi}{2}\)
\(\dfrac{2sin^2x+cos4x-cos2x}{\left(sinx-cosx\right)sin2x}=0\)
\(\Leftrightarrow2sin^2x+cos4x-cos2x=0\)
\(\Leftrightarrow2sin^2x-1+cos4x-cos2x+1=0\)
\(\Leftrightarrow2cos^22x-2cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được \(x=-\dfrac{\pi}{4}+k\pi\)
ĐKXĐ: \(sinx\ne\pm1\)
\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)
\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)
\(\Leftrightarrow-6sin^2x-2sinx+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
ĐK: \(x\ne k\pi\)
\(\dfrac{1+sin2x+cos2x}{1+cot^2x}=sinx.\left(sin2x+2sin^2x\right)\)
\(\Leftrightarrow\dfrac{1+sin2x+cos2x}{\dfrac{cos^2x+sin^2x}{sin^2x}}=sinx.\left(2sinx.cosx+2sin^2x\right)\)
\(\Leftrightarrow\dfrac{1+sin2x+cos2x}{\dfrac{1}{sin^2x}}=2sin^2x.\left(cosx+sinx\right)\)
\(\Leftrightarrow1+sin2x+cos2x=2cosx+2sinx\)
\(\Leftrightarrow1+2sinx.cosx+2cos^2x-1=2cosx+2sinx\)
\(\Leftrightarrow\left(cosx-1\right).\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(cosx-1\right).sin\left(x+\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x+\dfrac{\pi}{4}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow2sin^3x+1-sin^2x-1=0\)
\(\Leftrightarrow sin^2x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)