K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

Kẻ HK vuông góc BC

 \(\Delta BKM=\Delta BCD\left(g-g\right)\)

 \(\Delta CHM=\Delta CBE\left(g-g\right)\)

\(\frac{\Rightarrow CH}{BC}=\frac{CM}{CE}\)

\(\Rightarrow CH\cdot CE=CM\cdot BC\left(2\right)\)

Từ (1) và (2 ) ta có :

\(BH\cdot BD+CH\cdot CE=BC^2\)

\(\Delta ABD=ACE\left(g-g\right)\)

\(\frac{\Rightarrow AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow AB\cdot AE=AC\cdot AD\)

6 tháng 5 2018

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

c: Xét ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN

6 tháng 5 2016

a) Chứng minh tam giác AED đông dang tam giác ACB

b) Kẻ HI vuông góc BC

Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạngvới ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AE*AB và AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng vói ΔABC

=>góc ADE=góc ABC

d: ΔADE đồng dạng với ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ADE}=30\left(cm^2\right)\)

a: BD=4cm

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

c: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

=>AH vuông góc với BC tại H

mà ΔACB cân tại A

nên AH vuông góc với BC tại trung điểm của BC

6 tháng 3 2022

Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ