K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

A = 3+33+....+32010

đề bài đó hả

5 tháng 12 2017

Nếu vậy thi \(3+3^3+3^5+....+3^{2009}\) chứ, 3^2010 là sao mà hợp sãy số

13 tháng 12 2017

a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)

=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100

=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101

=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )

=> 2A = 3^101 - 3

=> A = \(\dfrac{3^{101}-3}{2}\)

Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)

b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100

=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )

=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )

=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4

=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4

=> A chia hết cho 4

Vậy A chia hết cho 4 ( điều phải chứng minh )

Chúc bạn hoc tốt! ~ vuithanghoaokyeu

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

26 tháng 10 2018

Bài 1:

          A=400x7x36+1620

*400x7x36 \(⋮\)2;3;5;9 

 1620         \(⋮\) 2;3;5;9

\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9

Bài 2:

C=3+32+33+........+360

   =(3+32)+(33+34)+...........+(359+360)

   =3.(1+2) 

26 tháng 10 2018

Bài 2 : 

a, \(C=3+3^2+3^3...+3^{60}\)

\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)

\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)

\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)

\(\Rightarrow C⋮4\)

\(b,1+3+3^2+3^3+...+3^{60}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)

\(\Rightarrow2A=3^{61}-1\)

\(\Rightarrow A=\frac{3^{61}-1}{2}\)

31 tháng 1 2022

undefined

31 tháng 1 2022

Đặt biểu thức trên là A

Chứng minh A\(⋮4\) 

Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)

          A=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

         A=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

         A=\(3.4+3^3.4+...+3^{59}.4\)

         A=\(4\left(3+3^3+...+3^{59}\right)\)

Vậy \(A⋮4\)

Chứng minh \(A⋮13\)

Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)

           A=\(\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

           A=\(3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

           A=\(3.13+...+3^{58}.13\)

           A=\(13\left(3+...+3^{58}\right)\)

Vậy \(A⋮13\)

30 tháng 4 2017

dốt thế 

30 tháng 4 2017

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

8 tháng 12 2021

\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)

8 tháng 12 2016

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011