K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

hình như bài này thiếu ĐK rồi bạn xem lại đi

21 tháng 2 2020

Vì \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0;\forall x,y\\\left|y^2-9\right|^{2014}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0;\forall x,y\)

Do đó \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)

Vậy \(\left(x,y\right)=\left\{\left(2;3\right);\left(2;-3\right)\right\}\)

21 tháng 2 2020

vì (x-2)^2012 \(\ge\)0 với mọi x   (1)

 \(|y^2-9|^{2014}\ge0\) với mọi y    (2) 

Mà (x-2)^2012 +\(|y^2-9|^{2014}=0\) (3)

Từ (1), (2), (3) suy ra (x-2)^2012 =0 và \(|y^2-9|^{2014}=0\)

suy ra x=2 và y^2=9

Suy ra x=2 và y=\(\pm\)3

18 tháng 12 2016

\(\left(x-2\right)^{2012}\ge0\forall x\\ \left|y^2-9\right|^{2014}\ge0\forall y\)

Nên (x-2)^2012+y^29^2014=0

\(\Leftrightarrow\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x-2=0\\y^2-9=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2\\y^2=9\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2\\y=\pm3\end{cases}\)

15 tháng 12 2016

\(x=2\)

\(y=3\)

\(\Rightarrow x\cdot y=2\cdot3=6\)

15 tháng 12 2016

x=2

y=3

\(\Rightarrow x.y=2.3=6\)NHA  BAN

3 tháng 3 2016

Ta có: \(x^{2014}+x^{2012}+x^{2010}+...+x^2+1=0\)

=>\(x^{2014}+x^{2012}+x^{2010}+...+x^2=0-1=\left(-1\right)\)

Vô lí => X không có giá trị .

25 tháng 6 2021

\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|\ge\left|x-2010+2014-x\right|+\left|x-2012\right|\ge2\)

\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|=2\)

dấu "=' \(\Leftrightarrow\left\{{}\begin{matrix}x-2012=0\\2010\le x\le2014\end{matrix}\right.\)\(\Rightarrow x=2012\)

25 tháng 6 2021

Thay vào thì \(|x-2010|+|x-2012|+|x-2014|=4\) (Vô lý)

30 tháng 8 2016

\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)

=> \(\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)

=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)

=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)

=> \(\left(x+2016\right).\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)

Vì \(\frac{1}{2012}>\frac{1}{2014};\frac{1}{2013}>\frac{1}{2015}\)

=> \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)

=> \(x+2016=0\)

=> \(x=-2016\)