Cho a,b,c là số dương thỏa mãn a+b+c=3. CMR
a/ \(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge\dfrac{3\sqrt{2}}{2}\)
b/ \(\sqrt{\dfrac{a^3}{b+3}}+\sqrt{\dfrac{b^3}{c+3}}+\sqrt{\dfrac{c^3}{a+3}}\ge\dfrac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Đặt vế trái BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2011}\)
Đồng thời: \(\left\{{}\begin{matrix}y^2+z^2-x^2=2a^2\\z^2+x^2-y^2=2b^2\\x^2+y^2-z^2=2c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\right)\)
\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\right)\)
\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\right)\)
\(\Rightarrow P\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{\left(y+z+z+x+x+y\right)^2}{2x+2y+2z}-\left(x+y+z\right)\right)=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\sqrt{\dfrac{2011}{2}}\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\) (x;y;z > 0 do a;b;c>0)
Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\)
Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\) (1)
Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\) . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)
Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)
Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)
Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)
Từ (1) ; (2) suy ra : \(VT\ge VP\)
" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn
Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng
Đặt vế trái là T, ta có:
\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)
Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)
\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được
\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)
\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)
\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)
\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)
Đẳng thức xảy ra khi a=b=c=1
b) Đặt vế trái là N,ta có:
\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)
\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)
Đẳng thức xảy ra khi a=b=c=1