K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

Lời giải:

Ta có \(m.9^x-(2m+1).6^x+m.4^x\geq 0\)

\(\Leftrightarrow m\left(\frac{9}{4}\right)^x-(2m+1)\frac{6^x}{4^x}+m\geq 0\)

\(\Leftrightarrow m[\left(\frac{3}{2}\right)^x]^2-(2m+1)\left(\frac{3}{2}\right)^x+m\geq 0\)

Đặt \(\left(\frac{3}{2}\right)^x=t; x\in [0;1]\Rightarrow t\in [1; \frac{3}{2}]\)

BPT trở thành: \(mt^2-(2m+1)t+m\geq 0\)

\(\Leftrightarrow m(t^2-2t+1)-t\geq 0\)

\(\Leftrightarrow m(t-1)^2-t\geq 0\) (*)với mọi \(t\in [1; \frac{3}{2}]\)

Nếu \(m\) là số nguyên âm, \(\Rightarrow m(t-1)^2\leq 0\)

\(t\in [1; \frac{3}{2}]\Rightarrow -t < 0\)

Do đó \(m(t-1)^2-t< 0\) (trái với (*)). Vậy có nghĩa là không tồn tại số nguyên âm m nào thỏa mãn điều kiện đã cho

Vậy có 0 giá trị thỏa mãn.