so sánh:
a) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
b) \(\sqrt[]{235}\) và 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{13}{38}\) và \(\dfrac{1}{3}\)
\(\dfrac{1}{3}\) = \(\dfrac{13}{39}\) < \(\dfrac{13}{38}\)
=> \(\dfrac{13}{38}>\dfrac{1}{3}\)
b)\(\sqrt{235}\) và 15
15 = \(\sqrt{225}\) < \(\sqrt{235}\) ( vì 225 < 235)
=> \(\sqrt{235}>15\)
tick mình nha
=>
a, Ta có:
\(\dfrac{13}{38}\)=\(\dfrac{39}{114}\) ; \(\dfrac{1}{3}\)=\(\dfrac{38}{114}\)
Vì 38 < 39 ⇒ \(\dfrac{39}{114}>\dfrac{38}{114}\)
Vay \(\dfrac{13}{38}>\dfrac{1}{3}\)
b, Goi \(\sqrt{235}\)= a ⇒ 235 = \(a^2\)
Ta có : 15^2= 225
Vì 235 > 225 nên a^2 > 15^2
Vay \(\sqrt{235}\)>15
290=(25)18=3218
536=(52)18=2518
Vì 32>25 nên 3218>2518
=>290>536
b,15=\(\sqrt{225}\) <\(\sqrt{235}\)
=> 15<\(\sqrt{235}\)
c, Ta có: \(\dfrac{1}{3}=\dfrac{13}{39}\)
vì 38<39
nên \(\dfrac{13}{38}>\dfrac{13}{39}\)
a) 290= (210)9mà 210=(25)2
536= (54)9mà 54=(52)2
Do 25>52nên 290>536
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Do : \(8^{100}< 9^{100}\)
=> \(2^{300}< 3^{200}\)
b) Do \(\dfrac{13}{38}>\dfrac{13}{39}\)
Mà : \(\dfrac{13}{39}=\dfrac{1}{3}\)
=> \(\dfrac{13}{38}>\dfrac{1}{3}\)
c)Do : \(\sqrt{235}>\sqrt{225}\)
Mà : \(\sqrt{225}=15\)
=> \(\sqrt{235}>15\)
a) Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Ta thấy 8<9 suy ra \(8^{100}< 9^{100}\)
Vậy \(2^{300}< 3^{200}\)
\(ta có A=\dfrac{13^{15}+1}{13^{16}+1}=\dfrac{13^{15}}{13^{16}}+1\)=\(\dfrac{1}{13}+1\)
B=\(\dfrac{13^{16}+1}{13^{17}+1}=\dfrac{13^{16}}{13^{17}}+1\)=\(\dfrac{1}{13}+1\)
vậy A=B
Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)
=10
Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)
\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)
\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)
\(a,\dfrac{13}{38}\) và \(\dfrac{1}{3}.\)
Ta có: \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}.\)
\(\Rightarrow\dfrac{13}{38}>\dfrac{1}{3}.\)
\(b,\sqrt{235}\) và \(15.\)
Ta có: \(\sqrt{235};15=\sqrt{225}.\)
Vì \(\sqrt{235}>\sqrt{225}\) (do \(235>225\))
nên \(\sqrt{235}>15.\)