Tìm ba số dương biết tổng các bình phương của chúng bằng 181;số thứ hai bằng \(\dfrac{3}{4}\) số thứ nhất và bằng \(\dfrac{2}{3}\) số thứ ba
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số dương cần tìm là x , y , z
Theo đề bài ra ta có : x2 + y2 + z2
và y = 3.x/4 = 2.z/3
BCNN(3;2) = 6
suy ra : y . 1/6 = 1/6 . 3/4 .x = 1/6 . 2/3 . z
khi và chỉ khi : y/6 = x/8 = x/9
suy ra : y2/62 = x2/82 = z2/92 = y2 + x2 + z2/36 + 64 + 81= 181/181= 1
Từ y2/62 = 1 suy ra y2 = 62 suy ra y = 6
x2/82 = 1 suy ra x2 = 82 suy ra x = 8
z2/92 = 1 suy ra z2 = 92 suy ra z = 9
Vậy y = 6 ; x = 8 ; z = 9
Chọn A
Gọi d là công sai. Ba số phải tìm là: (x-d); x; (x+d). Ta có hệ phương trình
gọi hai số chãn dương liên tiếp là \(a\)và \(a+2\)trong đó \(\left(a>0\right)\)
theo giả thiết thì \(a^2+\left(a+2\right)^2=164\)
<=> \(a^2+a^2+4a+4=164\)
=> \(2a^2+4a-160=0\)
=> \(\left(a-8\right)\left(a+10\right)=0\)=> \(\hept{\begin{cases}a=8\left(tm\right)\\a=-10< 0\left(ktm\right)\end{cases}}\)
Gọi 3 số dương lần lượt là a,b,c
ta có:a2+b2+c2=181
và b=\(\dfrac{3}{4}\).a=\(\dfrac{2}{3}\).c
=>\(\dfrac{b}{6}=\dfrac{3a}{4.6}=\dfrac{2c}{3.6}=\dfrac{b}{6}=\dfrac{a}{8}=\dfrac{c}{9}\)
=>\(\dfrac{b^2}{36}=\dfrac{a^2}{64}=\dfrac{c^2}{81}=\dfrac{a^2+b^2+c^2}{64+36+81}=\dfrac{181}{181}=1\)=>\(\left\{{}\begin{matrix}a^2=64\\b^2=36\\c^2=81\end{matrix}\right.=>\left\{{}\begin{matrix}a=\pm8\\b=\pm6\\c=\pm9\end{matrix}\right.\)
Vì a,b,c>0=>(a,b,c)=(8,6,9)