K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a+1}\ge1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}+1-\dfrac{1}{d+1}\)

\(=\dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\)\(\ge3\sqrt[3]{\dfrac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho 3 BĐT còn lại cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}};\dfrac{1}{d+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\dfrac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow1\ge81abcd\Leftrightarrow abcd\le\dfrac{1}{81}\)

15 tháng 10 2017

Từ giả thiết, ta có:

\(\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}+1-\dfrac{1}{1+d}=\dfrac{b}{1+b}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\ge3\sqrt[3]{\dfrac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{cda}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chứng minh rồi rút gọn ta được:

\(abcd\le\dfrac{1}{81}\left(đpcm\right)\)

15 tháng 10 2017

Mỗi vế trừ đi 4

20 tháng 7 2017

Đặt vế trái BĐT cần chứng minh là P

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)

Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)

\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)

Dấu ''='' xảy ra khi và chỉ khi a=b=c

16 tháng 3 2018

Đặt \(\left\{{}\begin{matrix}x=a-\dfrac{1}{2}\\y=b-\dfrac{1}{2}\\z=c-\dfrac{1}{2}\\t=d-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow x+y+z+t=0\)

\(BDT\Leftrightarrow\dfrac{2\left(2x+1\right)}{4x^2+3}+\dfrac{2\left(2y+1\right)}{4y^2+3}+\dfrac{2\left(2z+1\right)}{4z^2+3}+\dfrac{2\left(2t+1\right)}{4t^2+3}\le\dfrac{8}{3}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}+\dfrac{\left(2y-1\right)^2}{4y^2+3}+\dfrac{\left(2z-1\right)^2}{4z^2+3}+\dfrac{\left(2t-1\right)^2}{4t^2+3}\ge\dfrac{4}{3}\left(1\right)\)

Ta có: \(4x^2+3=3x^2+3+\left(y+z+t\right)^2\le3x^2+3+3\left(y^2+z^2+t^2\right)\)

\(=3\left(x^2+y^2+z^2+t^2+1\right)\)

\(\Rightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}\ge\dfrac{\left(2x-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\ge\dfrac{\left(2x-1\right)^2+\left(2y-1\right)^2+\left(2z-1\right)^2+\left(2t-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)-4\left(x+y+z+t\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}=\dfrac{4}{3}=VP_{\left(1\right)}\)

a=b=c=d=\(\frac{1}{2}\) Uct xem

NV
13 tháng 11 2018

\(\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1-\dfrac{a}{1+a}=\dfrac{1}{1+a}\)

\(\Rightarrow\dfrac{1}{1+a}\ge\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\ge3\dfrac{\sqrt[3]{bcd}}{\sqrt[3]{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Chứng minh tương tự ta có:

\(\dfrac{1}{1+b}\ge3\dfrac{\sqrt[3]{acd}}{\sqrt[3]{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\dfrac{\sqrt[3]{abd}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\dfrac{\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế với vế của các BĐT trên ta được:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\dfrac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\Rightarrow81abcd\le1\Rightarrow abcd\le\dfrac{1}{81}\)

Dấu "=" xảy ra khi \(a=b=c=d=\dfrac{1}{3}\)

29 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

31 tháng 1 2018

Chỉ bằng các kiến thức cho trong SGK (bất đẳng thức Cô si cho hai số không âm; bất đẳng thức Bunhiacopxki cho 2 cặp số) có thể giả bài toán như sau:

Ta có \(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)=\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+d\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

\(=4+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{d}+\dfrac{d}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{d}+\dfrac{d}{b}\right)+\left(\dfrac{c}{d}+\dfrac{d}{c}\right)\)

\(\ge4+2+2+2+2+2+2=16\)

Từ đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\). Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{a}{c}=\dfrac{c}{a};\dfrac{a}{d}=\dfrac{d}{a};\dfrac{b}{c}=\dfrac{c}{b};...\Leftrightarrow a=b=c=d\)