K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2020

Lời giải:

Ta thấy, với mọi số thực $x$ thì:

$f(x)=3x^2-1$

$f(-x)=3(-x)^2-1=3x^2-1$

Do đó: $f(x)=f(-x)$ với mọi số thực $x$

Ta có đpcm.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(f'\left(x\right)=4sin\left(3x-\dfrac{\pi}{4}\right)\cdot\left[sin\left(3x-\dfrac{\pi}{4}\right)\right]'\\ =4\left(3x-\dfrac{\pi}{4}\right)'cos\left(3x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)\\ =6sin\left(6x-\dfrac{\pi}{2}\right)\)

Vì \(-1\le sin\left(6x-\dfrac{\pi}{2}\right)\le1\Rightarrow-6\le6sin\left(6x-\dfrac{\pi}{2}\right)\le6\Leftrightarrow-6\le f'\left(x\right)\le6\)

Vậy \(\left|f'\left(x\right)\right|\le6\forall x\)

28 tháng 11 2017

\(f\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=f\left(x\right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có \(f'\left( x \right) = 2.2\sin \left( {x + \frac{\pi }{4}} \right).{\left[ {\sin \left( {x + \frac{\pi }{4}} \right)} \right]^,} = 4\sin \left( {x + \frac{\pi }{4}} \right)\cos \left( {x + \frac{\pi }{4}} \right) = 2\sin \left( {2x + \frac{\pi }{2}} \right)\)

\( \Rightarrow f''\left( x \right) = 2.2\cos \left( {2x + \frac{\pi }{2}} \right) = 4\cos \left( {2x + \frac{\pi }{2}} \right)\)

Mặt khác \( - 1 \le \cos \left( {2x + \frac{\pi }{2}} \right) \le 1 \Leftrightarrow  - 4 \le f''\left( x \right) \le 4\)

Vậy \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Bài 1:

Cho $y=0$ thì: $f(x^3)=xf(x^2)$

Tương tự khi cho $x=0$

$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$

$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$

Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$

Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$

Đến đây ta có:

$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$

$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$

$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$

$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$

$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$

$=2xf(x^2)+4f(x)+2xf(1)$

Do đó:

$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$

$2f(x)=2xf(1)$

$f(x)=xf(1)=ax$ với $a=f(1)$

 

7 tháng 8 2021

\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)

Sửa lại đề câu 2 !!

NV
13 tháng 1 2024

Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)

Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ

(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)

Thế \(x=-1;y=\dfrac{1}{2}\) ta được:

\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)

\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)

Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó

\(\Rightarrow f\left(c\right)=-1\)

Thế \(y=c\) vào ta được:

\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)

\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)

\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)

- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\) 

\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)

(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)

Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\) 

Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số

13 tháng 1 2024

Anh giúp em ạ! Kết quả không như bạn làm ạ. 

https://hoc24.vn/cau-hoi/.8752594043792