Phân tích đa thức thành nhân tử
x^12-3x^6y^6+y^12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
\(=4\left[\left(x+5\right)\left(x+12\right)\right]\left[\left(x+6\right)\left(x+10\right)\right]-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=\left(2x^2+34x+120\right)\left(2x^2+32x+60\right)-3x^2\)
\(=\left(2x^2+33x+120\right)^2-x^2-3x^2\)
\(=\left(2x^2+33x+120-2x\right)\left(2x^2+33x+120+2x\right)\)
\(=\left(2x+15\right)\left(x+8\right)\left(2x^2+35x+120\right)\)
a, 2x2 + 10xy=2x(x+5y)
b, 3x ( y - x ) + 6y ( y - x )=(3x+6y)(y-x)
c, 3x ( x - 2 ) - x + 2 + 5x ( x - 2 )=3x(x-2)-(x-2)+5x(x-2)=(8x-1)(x-2)
\(4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)
\(=2\left(x^2+60+17x\right).2\left(x^2+60+16x\right)-3x^2\)
\(=\left(2x^2+120+33x+x\right)\left(2x^2+120+33x-x\right)-3x^2\)
\(=\left(2x^2+120+33x\right)^2-x^2-3x^2\)
\(=\left(2x^2+120+33x\right)^2-4x^2\)
\(=\left(2x^2+120+33x+2x\right)\left(2x^2+120+33x-2x\right)\)
\(=\left(2x^2+35x+120\right)\left(2x^2+31x+120\right)\)
\(=\left(2x^2+35x+120\right)\left(x+8\right)\left(2x+15\right)\)
\(x^{12}-3x^6+1=\left(x^{12}+x^9-x^6\right)-\left(x^9-x^3+x^6\right)-\left(x^3-1+x^6\right)=x^6\left(x^6+x^3-1\right)-x^3\left(x^6+x^3-1\right)-\left(x^6+x^3-1\right)\)
\(=\left(x^6+x^3-1\right)\left(x^6-x^3-1\right)\)
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)
x12 - 3x6y6 + y12
= ( x6)2 - 2x6y6 + ( y6)2 - ( x3y3)2
= ( x6 - y6)2 - ( x3y3)2
= ( x6 - y6 - x3y3)(x6 - y6 + x3y3)