Tìm m để đường thẳng y = (2m + 3)x + m - 1 và đường thẳng y = 2x + 3 cắt nhau tại 1 điểm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
\(PTHDGD:2x+m=x-2m+3\)
Mà 2 đt cắt tại 1 điểm trên trục tung nên \(x=0\)
\(\Leftrightarrow m=3-2m\\ \Leftrightarrow m=1\)
+) Tìm giao điểm của đường thẳng \(y=-3x+2\) và trục hoành:
Phương trình hoành độ giao điểm: \(-3x+2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy đường thẳng \(y=-3x+2\) cắt trục hoành tại điểm \(A\left(\dfrac{2}{3};0\right)\)
+) Yêu cầu bài toán \(\Rightarrow A\left(\dfrac{2}{3};0\right)\in\left(d\right):y=\dfrac{3}{2}x+2m+1\)
Thay \(x=\dfrac{2}{3};y=0\) ta có: \(\dfrac{3}{2}.\dfrac{2}{3}+2m+1=0\Rightarrow2m+2=0\)
\(\Rightarrow2m=-2\Rightarrow m=-1\).
Lời giải:
PT hoành độ giao điểm:
$-3x+6-(2,5x-2m+1)=0$
$\Leftrightarrow -5,5x+5+2m=0$
$\Leftrightarrow x=\frac{5+2m}{5,5}$
Tung độ giao điểm:
$y=-3x+6=\frac{-3(5+2m)}{5,5}+6$
Để 2 đths trên cắt nhau tại 1 điểm trên trục hoành thì $y=\frac{-3(5+2m)}{5,5}+6=0$
$\Leftrightarrow m=3$
Lời giải:
2 đths cắt nhau tại 1 điểm trên trục hoành có hoành độ -1 nghĩa là 2 đths cắt nhau tại $(-1; 0)$
Mà $0\neq 2(-1)-1$ nên điểm $(-1;0)$ không thuộc đths $y=2x-1$
Bạn xem lại đề.
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)