tim Gtnn cua 2x^2-8x+14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)
\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
\(M=2a^2+a-4=2a^2+3a-2a-3-1\)
\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)
\(M=\left(a-1\right)\left(2a+3\right)-1\)
Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)
\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)
2A = 4x^2+6y^2+8xy-16x-4y+36
= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2
= (2x+2y-4)^2+2.(y+3)^2+2 >= 2
=> A >= 1
Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3
Vậy GTNN của A = 1 <=> x=5 và y=-3
Tk mk nha
Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.
Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)
Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.
Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)
\(\Leftrightarrow\frac{11}{6}\le A\le2\)
Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)
Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),
Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:
VD: minA=\(\frac{11}{6}\).
Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).
Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).
Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên \(x^2-8x+16=\left(x-4\right)^2\).
Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).
Hình như biểu thức không có max.
a/ \(2x^2+8x+1=2\left(x^2+4x+\frac{1}{2}\right)=2\left(x^2+2.2x+4-4+\frac{1}{2}\right)\)
\(=2\left[\left(x+2\right)^2-\frac{7}{2}\right]=2\left(x+2\right)^2-7\ge-7\)
Vậy Min A = -7 khi x + 2 = 0 => x = 2
b/ \(2x^2+3x+1=2\left(x^2+\frac{3}{2}x+\frac{1}{2}\right)=2\left(x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{9}{16}+\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{3}{4}\right)^2-\frac{1}{16}\right]=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Vậy Min B = -1/8 khi x + 3/4 = 0 => x = -3/4
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.
Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).
\(2x^2-8x+14\)
\(=2x^2-8x+8+6\)
\(=\left(2x^2-8x+8\right)+6\)
\(=2\left(x^2-4x+4\right)+6\)
\(=2\left(x^2-2.x.2+2^2\right)+6\)
\(=2\left(x-2\right)^2+6\)
Vậy GTNN của \(2x^2-8x+14\) bằng 6 khi \(x-2=0\Leftrightarrow x=2\)
Đã thêm vào Video