K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

Tham khảo

{x + y + z = 2
{2xy - z^2 = 4
<=> {z=2-y-x
       {z^2=2xy-4
<=>{z^2=4+y^2+x^2-4y+2xy-4x
      {z^2=2xy-4
=> 4+y^2+x^2-4y+2xy-4x=2xy-4
<=>8+y^2+x^2-4y-4x=0
<=> (x^2-4x+4)+(y^2-4y+4)=0
<=>(x-2)^2+(y-2)^2=0
<=>{(x-2)^2=0
      {(y-2)^2=0
<=>{ x=2
       {y=2
=>z=2-2-2=-2
vậy x=2,y=2,z=-2

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$

14 tháng 2 2021

\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)

Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)

\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)

\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)

Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)

\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)

\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)

\(\Rightarrow x=y=z\)

\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)

24 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=1\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\left(x,y\in Z\right)\)

18 tháng 5 2021

b) Áp dụng bđt Svac-xơ:

\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)

=> hpt vô nghiệm

c) Ở đây x,y,z là các số thực dương

Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)

 

23 tháng 5 2022

tham khảo

https://hoc24.vn/hoi-dap/tim-kiem?id=165107&q=1%2Fx%201%2F%28y%20z%29%3D1%2F3%20%201%2Fy%201%28z%20x%29%3D1%2F4%20%201%2Fz%201%2F%28x%20y%29%3D1%2F5%20%20gi%E1%BA%A3i%20h%E1%BB%87%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20%E1%BA%A1%20m%E1%BB%8Di%20ng%C6%B0%E1%BB%9Di%20gi%E1%BA%A3i%20d%C3%B9m%20em%20v%E1%BB%9Bi%20%E1%BA%A1#:~:text=2020%20l%C3%BAc%2013%3A53-,%E2%87%94,2,-%E2%87%92y%3D23