CMR: Đường thẳng (d): \(y=mx+2m+1\) luôn luôn đi qua 1 điểm cố định khi giá trị m thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua
\(\Leftrightarrow y_o=mx_o+2m+1\)
\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)
\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
y=m(x-2)+1
=>m(x-2)-y+1=0
Điểm mà (d) luôn đi qua có tọa độ là:
x-2=0 và 1-y=0
=>x=2 và y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Điểm mà (d) luôn đi qua là:
x=0 và y=m*0-3=-3
b: góc BAO=60 độ
=>góc tạo bởi (d) với trục Ox bằng60 độ
=>\(m=tan60=\sqrt{3}\)
c: y=mx-3
=>mx-y-3=0
\(d\left(O;d\right)=\dfrac{\left|0\cdot m+0\cdot\left(-1\right)-3\right|}{\sqrt{m^2+1}}=\dfrac{3}{\sqrt{m^2+1}}\)
Để d lớn nhất thì m^2+1 nhỏ nhất
=>m=0
a giải thích câu a chi tiết thêm 1 tí đc k ạ, e vẫn chưa hiểu lắm a ạ, e cảm ơn
Lời giải:
Ta có:
\(y=mx+2m+1\) với mọi m
\(\Leftrightarrow m(x+2)+(1-y)=0\) với mọi m
Để điều trên đúng với mọi m thì \(\left\{\begin{matrix} x+2=0\\ 1-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=1\end{matrix}\right.\)
Vây điểm \((-2;1)\) là điểm cố định luôn đi qua d khi m thay đổi
Nghĩa là luôn tồn tại một điểm cố định khi giá trị m thay đổi (đpcm)
Cảm ơn bạn nhìu lắm