K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

1.     Vì BD, BF là các tiếp tuyến của (O) nên OD BD, OF BF.

Xét 2 tam giác vuông OBD và OBF có

O B  chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)

BD = BF

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K. D O E = 90 o

Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:

D F E = 1 2 D O E = 45 o

∆ KIF vuông cân tại K.

=>BIF=45o

10 tháng 5 2019

mình hỏi rồi nè

22 tháng 6 2021

a) Ta có: AE,AF là tiếp tuyến \(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A

\(\Rightarrow\angle AEF=\angle AFE\Rightarrow\angle BFX=\angle CEY\)

Xét \(\Delta BFX\) và \(\Delta CEY:\) Ta có: \(\left\{{}\begin{matrix}\angle BFX=\angle CEY\\\angle BXF=\angle CYE=90\end{matrix}\right.\)

\(\Rightarrow\Delta BFX\sim\Delta CEY\left(g-g\right)\Rightarrow\dfrac{BF}{CE}=\dfrac{BX}{CY}\)

mà \(\left\{{}\begin{matrix}BF=BD\\CE=CD\end{matrix}\right.\) (tính chất tiếp tuyến) \(\Rightarrow\dfrac{BD}{CD}=\dfrac{BX}{CY}\)

Vì \(BX\parallel DK\parallel CY\) \(\Rightarrow\dfrac{XK}{KY}=\dfrac{BD}{CD}\Rightarrow\dfrac{BX}{CY}=\dfrac{XK}{KY}\)

Xét \(\Delta BKX\) và \(\Delta CKY:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BK}{CY}=\dfrac{KX}{KY}\\\angle BXK=\angle CYK=90\end{matrix}\right.\)

\(\Rightarrow\Delta BKX\sim\Delta CKY\left(c-g-c\right)\Rightarrow\angle BKX=\angle CKY\)

\(\Rightarrow90-\angle BKX=90-\angle CKY\Rightarrow\angle BKD=\angle CKD\)

\(\Rightarrow\dfrac{BK}{KC}=\dfrac{BD}{CD}\Rightarrow BD.CK=BK.CD\)

undefined