Cho a,b thuộc N và a: 3 dư 1 b:3 dư 2
Chứng minh(a.b):3 dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
Ta có dạng của a=5k+2 (k là số tự nhiên)
b= 5p+3 (p là số tự nhiên)
Suy ra a.b = (5k+2).(5p+3)= 5^2.kp+5k.3+2.5p+6= 5.(5kp+3k+2p+1) +1
Vậy a.b chia 5 dư 1 (ĐPCM)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
Ta có: a = 3k + 1
b = 3k + 2 (k thuộc N)
=> a.b = (3k + 1)(3k + 2) = 9k2 + 9k + 2 là 1 số chia 3 dư 2 => ĐPCM
ta có : a = 3x + 1
b = 3x + 2 (x thuộc N) (N = số tự nhiên)
=> axb = (3x + 1) (3x + 2) = 9x2 + 9x + 2 là số chia 3 dư 2 => ĐPCM
a : 3 dư 1 \(\Rightarrow a-1⋮3\)
b : 3 sư 2 \(\Rightarrow b-2⋮3\)
\(\Rightarrow\left(a-1\right)\left(b-2\right)=ab-\left(2a+b\right)+2⋮3\)
Ta có \(a-1⋮3\Rightarrow2a-2⋮3\)
\(\Rightarrow2a-2+b-2=2a+b-4=2a+b-1-3⋮3\Rightarrow2a+b-1⋮3\)
Từ \(ab-\left(2a+b\right)+2=ab-\left(2a+b-1\right)+1⋮3\)
Mà \(2a+b-1⋮3\Rightarrow ab+1⋮3\) => ab : 3 dư 2