K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\)

\(D=x-4+\sqrt{16-8x+x^2}=x-4+\left|4-x\right|=x-4+x-4=2x-8\)

\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)

\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)

23 tháng 6 2017

a) \(\sqrt{9x^2}-2x\left(x< 0\right)\)= \(\sqrt{\left(3x\right)^2}-2x\)

= \(\left|3x\right|-2x\) = \(-3x-2x\) (vì \(x< 0\) )

= \(-5x\)

b) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) (vì \(x>4\))

= \(2x-8\)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

18 tháng 9 2016

a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)

c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)

d, câu này sai đề rồi , nếu sửa lại phải như này :

\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)

= \(-5x\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))

= \(2x-8\)

4 tháng 10 2021

c) \(\sqrt{\left(x-2\right)^2}=10\)

\(x-2=10\)

\(x=12\)

d) \(\sqrt{9x^2-6x+1}=15\)

\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)

\(\sqrt{\left(3x-1\right)^2}=15\)

\(3x-1=15\)

\(3x=16\)

\(x=\dfrac{16}{3}\)

4 tháng 10 2021

a) \(đk:x\ge0\)

\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

b) \(đk:x\ge-2\)

\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)

\(\Leftrightarrow13\sqrt{x+2}=26\)

\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)

c) \(pt\Leftrightarrow\left|x-2\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)

d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)

\(\Leftrightarrow\left|3x-1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)

e) \(đk:x\ge\dfrac{8}{3}\)

\(pt\Leftrightarrow3x+4=9x^2-48x+64\)

\(\Leftrightarrow9x^2-51x+60=0\)

\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

2 tháng 7 2023

Đề yc giải pt à em?

2 tháng 7 2023

Câu b bạn có bị lỗi dấu căn không mà sao nó kéo dài cả 2 vế pt vậy :v

\(a,\sqrt{x^2-6x+9}+x=11\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=11-x\)

\(\Leftrightarrow\left|x-3\right|=11-x\\ TH_1:x\ge3\\ x-3=11-x\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\left(tm\right)\)

\(TH_2:x< 3\\ -x+3=11-x\\ \Leftrightarrow-x+x=11-3\\ \Leftrightarrow0=8\left(VL\right)\)

Vậy \(S=\left\{7\right\}\)

\(c,\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\) \(\left(dk:x\ge-1\right)\)

\(\Leftrightarrow\sqrt{4^2}.\sqrt{\left(x+1\right)}-\sqrt{3^2}.\sqrt{\left(x+1\right)}=4\left(1\right)\)

Đặt \(a=\sqrt{x+1}\left(a\ge0\right)\)

Pt trở thành : \(4a-3a=4\Leftrightarrow a=4\left(tmdk\right)\)

\(\Rightarrow\sqrt{x+1}=4\\ \Rightarrow\left(\sqrt{x+1}\right)^2=16\\ \Rightarrow\left|x+1\right|=16\)

\(TH_1:x\ge-1\\ x+1=16\Leftrightarrow x=15\left(tm\right)\\ TH_2:x< -1\\ -x-1=16\Leftrightarrow x=-17\left(tm\right)\)

Nhưng loại TH2 vì dk ban đầu là \(x\ge-1\)

Vậy \(S=\left\{15\right\}\)

\(d,\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\left(dk:x\ge-1\right)\\ \Leftrightarrow\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}-\sqrt{x+1}=0\)

Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\)

Tới đây bạn làm tương tự câu c nha.

 

 

18 tháng 8 2017

giúp mình vs nha...please!!!..

18 tháng 8 2017

a. 1/2*(-x^5)

b. (10-x)^5

c. x-4+(4-x) = 0

d. 6-2x-(3-x) = 3-x