Tính:
a) \(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}\);
b) \(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}\);
c) \(\dfrac{3}{5}:\left(\dfrac{1}{4}\cdot\dfrac{7}{5}\right)\);
d) \(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{13}{3}+\dfrac{17}{6}=\dfrac{26}{6}+\dfrac{17}{6}=\dfrac{43}{6}\)
b: \(=7-\dfrac{8}{3}=\dfrac{21-8}{3}=\dfrac{13}{3}\)
c: \(=\dfrac{17}{7}\cdot\dfrac{7}{4}=\dfrac{17}{4}\)
d: \(=\dfrac{16}{3}:\dfrac{16}{5}=\dfrac{16}{3}\cdot\dfrac{5}{16}=\dfrac{5}{3}\)
a) \(\dfrac{-4}{6}\)
b) \(\dfrac{1}{3}\)-\(\dfrac{20}{60}\)
= 0
c) \(-20^2\)+(\(-50^3\))
= -400 + (-125000)
=-125400
d) \(\dfrac{-2}{7}\)+\(\dfrac{15}{35}\)
= \(\dfrac{-10}{35}\)+\(\dfrac{15}{35}\)
= \(\dfrac{5}{35}\)=\(\dfrac{1}{7}\)
a) $\frac{2}{5} \times \frac{3}{8} \times \frac{3}{4} = \frac{{2 \times 3 \times 3}}{{5 \times 8 \times 4}} = \frac{{18}}{{160}} = \frac{9}{{80}}$
b) $\frac{1}{3} \times \frac{1}{6} \times \frac{1}{9} = \frac{{1 \times 1 \times 1}}{{3 \times 6 \times 9}} = \frac{1}{{162}}$
c) $\frac{3}{4}:\frac{1}{5}:\frac{7}{8} = \frac{3}{4} \times \frac{5}{1} \times \frac{8}{7} = \frac{{3 \times 5 \times 8}}{{4 \times 1 \times 7}} = \frac{{120}}{{28}} = \frac{{30}}{7}$
d) $\frac{3}{5}:\frac{1}{5}:\frac{3}{8} = \frac{3}{5} \times \frac{5}{1} \times \frac{8}{3} = \frac{{3 \times 5 \times 8}}{{5 \times 1 \times 3}} = 8$
a: \(=\dfrac{-7}{8}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+3+\dfrac{7}{8}=\dfrac{-7}{8}+\dfrac{7}{8}+3=3\)
b: \(=-\dfrac{8}{5}:\dfrac{5}{3}=-\dfrac{24}{25}\)
c: \(=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{6}{8}=\dfrac{6}{7}-\dfrac{5}{8}=\dfrac{48}{56}-\dfrac{35}{56}=\dfrac{13}{56}\)
a) $\frac{3}{2} \times \frac{5}{8} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{7}{4} = \frac{{15}}{{16}} + \frac{{28}}{{16}} = \frac{{43}}{{16}}$
b) $\frac{8}{5}:\left( {\frac{4}{3} - \frac{5}{6}} \right) = \frac{8}{5}:\left( {\frac{8}{6} - \frac{5}{6}} \right) = \frac{8}{5}:\frac{1}{2} = \frac{8}{5} \times 2 = \frac{{16}}{5}$
c) $\frac{3}{4} \times \frac{1}{5} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{1}{{10}} = \frac{3}{{20}} - \frac{2}{{20}} = \frac{1}{{20}}$
A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3
A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)
A = \(\dfrac{-73}{50}\)
B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))
B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)
B = \(\dfrac{13}{12}\)
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) . 2 : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{25}\)
A = \(\dfrac{56}{25}\)
\(a,=\dfrac{\sqrt{7}-5}{2}-\dfrac{3-\sqrt{7}}{2}+\dfrac{6\left(\sqrt{7}+2\right)}{3}-\dfrac{5\left(4-\sqrt{7}\right)}{9}\\ =\dfrac{\sqrt{7}-5-3+\sqrt{7}}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{2\sqrt{7}-8}{2}+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\sqrt{7}-4+2\sqrt{7}+4-\dfrac{20-5\sqrt{7}}{9}\\ =\dfrac{27\sqrt{7}-20+5\sqrt{7}}{9}=\dfrac{32\sqrt{7}-20}{9}\)
\(b,=\dfrac{2\left(\sqrt{6}+2\right)}{2}+\dfrac{2\left(\sqrt{6}-2\right)}{2}+\dfrac{5\sqrt{6}}{6}\\ =\sqrt{6}+2+\sqrt{6}-2+\dfrac{5\sqrt{6}}{6}\\ =\dfrac{12\sqrt{6}+5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)
\(c,=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\\ =\dfrac{2\sqrt{5}}{5+2\sqrt{6}-5}=\dfrac{2\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{30}}{6}\)
a: \(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}\)
\(=\dfrac{-3}{6}+\dfrac{5}{6}+\dfrac{2}{6}\)
\(=\dfrac{4}{6}=\dfrac{2}{3}\)
b: \(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}\)
\(=\dfrac{-9}{24}+\dfrac{42}{24}-\dfrac{2}{24}\)
\(=\dfrac{31}{24}\)
c: \(\dfrac{3}{5}:\left(\dfrac{1}{4}\cdot\dfrac{7}{5}\right)=\dfrac{3}{4}:\dfrac{7}{20}=\dfrac{3}{4}\cdot\dfrac{20}{7}=\dfrac{15}{7}\)
d: \(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}\)
\(=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=\dfrac{7}{8}\)