áp dụng quy tắc đổi dấu rồi rút gọn phân thức
\(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bà ngồi bà lột quần , bà ngồi bà lột áo , nói là bà nhưng có 24 tuổi à . Có 1 chú vào và lột đồ bà , cả 2 người trần truồng trong căn phòng có giường , hỏi 2 người đó làm gì , nêu tiếp câu chuyện theo hướng 18+
(y2-x2)/(x3-3x2y+3xy2-y3)= (y-x).(y+x)/(x-y)3= -(x-y)(x+y)/(x-y)3 =( -x-y)/(x-y)2
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{16\left(2-x\right)}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}\)\(=\dfrac{36\left(x-2\right)^3:4\left(x-2\right)}{-16\left(x-2\right):4\left(x-2\right)}\)\(=\dfrac{9\left(x-2\right)^2}{-4}\)
b) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{x\left(x-y\right)}{-5y\left(x-y\right)}\)\(=\dfrac{x}{-5y}\)
Lời giải:
a) \(\frac{45x(3-x)}{15(x-3)^3}=\frac{-45x(x-3)}{15(x-3)^3}=\frac{-3x}{(x-3)^2}\)
b) \(\frac{36(x-2)^3}{32-16x}=\frac{36(x-2)^3}{-16(x-2)}=\frac{-9}{4}(x-2)^2\)
c) \(\frac{x^2-xy}{5y^2-5xy}=\frac{x(x-y)}{-5y(x-y)}=\frac{x}{-5y}\)
d) \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{-(x^2-y^2)}{(x-y)^3}=\frac{-(x-y)(x+y)}{(x-y)^3}=\frac{-(x+y)}{(x-y)^2}\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
\(A=\frac{y^3-x^3}{x^3-3x^2y+3xy^2-y^3}\)
\(A=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x-y\right)^3}\)
\(A=\frac{-\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x-y\right)^2}\)
\(A=\frac{-x^2-xy-y^2}{x^2-2xy+y^2}\)
\(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\\ =-\dfrac{x^2-y^2}{x^3-3x^2y+3xy^2-y^3}\\ =-\dfrac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^3}\\ =-\dfrac{x+y}{\left(x-y\right)^2}\\ =-\dfrac{x+y}{x^2-2xy+y^2}\)