Cho tam giác ABC vuông tại A . cạnh AB = 8 cm , cạnh AC = 6 cm . tính cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do D thuộc AB cách A 2 (cm)
=> AD=AB/4=8/4=2 (cm)
Mà DE//BC
=>AE=AC/4=6/4=1,5 (cm)
=>Diện tích tam giác vuông EAD là:
S(EAD)=1/2AE.AD=1/2.2.1,5=1,5 (cm2)
Đ s:
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
\(BD\) chung
\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)
\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)
c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)
Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))
\(\Rightarrow DA< DC\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=10cm\)
b, Xét tam giác BAD và tam giác BHD có
BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900
Vậy tam giác BAD = tam giác BHD ( ch-gn)
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm
Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A, ta có: \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+5^2\)\(=61\)
\(\Rightarrow BC=\sqrt{61}\left(cm\right)\)
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá