1. Giải phương trình: x2+2x\(\sqrt{x+\dfrac{1}{x}}\)= 8x-1
2. Cho 3 số thực x, y, z thỏa mãn điều kiện: x+y+z = 0 và xyz khác 0
Tính giá trị biểu thức: P=\(\dfrac{x^2}{y^2+z^2-x^2}+\dfrac{y^2}{z^2+x^2-y^2}+\dfrac{z^2}{x^2+y^2-z^2}\)
Các bạn giúp mk vs mk cần gấp!
Câu 1:
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)
\(\Leftrightarrow x^2-4x+1=4x-2x\sqrt{x+\frac{1}{x}}\)
\(\Leftrightarrow x^2-4x+1=2x(2-\sqrt{x+\frac{1}{x}})\)
\(\Leftrightarrow x^2-4x+1=2x.\frac{2^2-\left(x+\frac{1}{x}\right)}{2+\sqrt{x+\frac{1}{x}}}\)
\(\Leftrightarrow x^2-4x+1=2x.\frac{4x-x^2-1}{x\left(2+\sqrt{x+\frac{1}{x}}\right)}\)
\(\Leftrightarrow (x^2-4x+1)\left(1+\frac{2}{2+\sqrt{x+\frac{1}{x}}}\right )=0\)
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0, do đó
\(x^2-4x+1=0\)
\(\Leftrightarrow x=2\pm \sqrt{3}\)
Câu 2:
Vì \(x+y+z=0\Leftrightarrow x=-(y+z)\)
\(\Rightarrow x^2=(y+z)^2=y^2+z^2+2yz\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
\(\Rightarrow \frac{x^2}{y^2+z^2-x^2}=\frac{x^2}{-2yz}=\frac{x^3}{-2xyz}\)
Hoàn toàn tương tự. ta có:
\(\frac{y^2}{z^2+x^2-y^2}=\frac{y^3}{-2xyz}; \frac{z^2}{x^2+y^2-z^2}=\frac{z^3}{-2xyz}\)
Do đó:
\(P=\frac{x^3+y^3+z^3}{-2xyz}\)
Ta biết rằng:
\(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\)
\(=-3(x+y)(y+z)(x+z)\)
\(=-3(-z)(-x)(-y)=3xyz\)
Suy ra \(P=\frac{3xyz}{-2xyz}=\frac{-3}{2}\)