K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

22 tháng 7 2015

a, 6 + 62 + 63 + 64

= (6+62) + (63+64)

= 6(1+6) + 63(1+6)

= 6.7 + 63.7

= 7(6+63) chia hết cho 7 (đpcm)


7+72+73+74+.....+710

= (7+72) + (73+74)+.....+(79+710)

=7(1+7) + 73(1+7) +.......+ 79(1+7)

= 7.8 + 73.8 +....... + 79.8

= 8(7 + 73 +....... + 79) chia hết cho 8 (đpcm)

16 tháng 10 2021

\(a,76-6\left(x-1\right)=10\)

\(76-6x-6=10\)

\(70-6x=10\)

\(6x=60\)

\(x=10\)

\(b,3.4^x-7=185\)

\(3.4^x=192\)

\(4^x=64\)

\(4^x=4^3\)

\(\Rightarrow x=3\)

Bài 1:Tìm x,biết:

a)  76 - 6( x - 1 ) = 10

=>  6( x - 1 ) =  76 -  10

=> 6( x - 1 ) =  66

=>   x - 1  = 11

=>  x  = 12

b)3.4^x-7=185

=>  3.4^x  =  185 + 7

=>  3.4^x  = 192

=> 4^x  = 64

=>   4^x  = 4^3

=>   x  =   3

18 tháng 12 2016

6 + 62 + ... + 610

= (6+62) + ( 63+64) + ... + ( 69 + 610 )

= 6(1+6) + 63(1+6)+...+69(1+6)

= 6.7 + 63 .7 +...+69.7

= 7.(6+63+...+69)

chia hết cho 7

18 tháng 12 2016

=6.(1+6)+6^3.(1+6)+........+6^9.(1+6)

=6.7+6^3.7+..........+6^9.7

=(6+6^3+........+6^9).7

Suy ra chia hết cho 7

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!