K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

Ta có :

a+b/b+c = c+d/d+a  

=> (a+b)/(c+d)= (b+c)/(d+a)  

=> (a+b)/(c+d)+1=(b+c)/(d+a)+1  

hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)  

- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a

 - Nếu a+b+c+d = 0 (điều phải chứng minh)

5 tháng 6 2019

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 6 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

 Vì \(b,d>0\Rightarrow bd>0\)

\(\Rightarrow ad< bc\)

Ta lại có:

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

Vì \(b,d>0\)

Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\)         \(\left(1\right)\)

Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)

Ta lại có:

\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)

Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

15 tháng 7 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

15 tháng 7 2017

ta có a+b/a-b=c+d/c-d

suy ra (a+b)(c-d)=(a-b)(c+d)

ac-ad+bc-bd=ac+ad-bc-bd

ac-ac+bc+bc-bd+bd=ad+ad

2bc=2ad 

nen bc=ad=a/b=c/d

vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

31 tháng 12 2017

Nếu ( a+b+c+d ) . ( a-b-c+d ) = ( a-b+c-d) . ( a+b-c-d)

=> \(\frac{a+b+c+d}{a-b+c-d}=\)\(\frac{a+b-c-d}{a-b-c+d}\)

=> \(\frac{a+b+c+d}{a-b+c-d}=\)\(\frac{a+b-c-d}{a-b-c+d}\)\(=\frac{\left(a+b+c+d\right)+\left(a+b-c-d\right)}{\left(a-b+c-d\right)+\left(a-b-c+d\right)}\)\(=\frac{2.\left(a+b\right)}{2.\left(a-b\right)}\)\(=\frac{a+b}{a-b}\)

\(\frac{a+b+c+d}{a-b+c-d}=\)\(\frac{a+b-c-d}{a-b-c+d}\)\(=\frac{\left(a+b+c+d\right)-\left(a+b-c-d\right)}{\left(a-b+c-d\right)-\left(a-b-c+d\right)}\)\(=\frac{2.\left(c+d\right)}{2.\left(c-d\right)}\)\(=\frac{c+d}{c-d}\)

=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(=\frac{a+b+a-b}{c+d+c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}\)=> \(\frac{2a}{2c}=\frac{2c}{2d}\)=> \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

13 tháng 6 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow\left(a+c\right)d< \left(b+d\right)c\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

6 tháng 11 2016

a=?

6 tháng 11 2016

=c lé à