Giải hệ: \(\hept{\begin{cases}u+uv+v=5\\u^2+v^2=5\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(a=\frac{1}{\sqrt{x-4}},b=\frac{1}{y+2}\) từ đây ta có
\(\Rightarrow\left\{{}\begin{matrix}3a+4b=7\\5a-1b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+4b=7\\20a-4b=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}23a=23\\3a+4b=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\).
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-4}}=1\\\frac{1}{y+2}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=1\\y+2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
b) Theo đề bài ta có hệ pt
\(\left\{{}\begin{matrix}u^2+v^2=65\\uv=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(u+v\right)^2-uv=65\\uv=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=65+2.\left(-28\right)=9\\uv=-28\end{matrix}\right.\)
TH1 : \(\left\{{}\begin{matrix}u+v=3\\uv=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=3-v\\\left(3-v\right)v=-28\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v=-4\Rightarrow u=7\\v=7\Rightarrow u=-4\end{matrix}\right.\)
TH2 \(\left\{{}\begin{matrix}u+v=-3\\uv=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=-3-v\\\left(-3-v\right)v=-28\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v=-7\Rightarrow u=4\\v=4\Rightarrow u=-7\end{matrix}\right.\)
Vậy .......
Câu a em nghĩ có thể làm như vầy ạ,câu b để sau (em mới lớp 7,cần suy ra nghĩ thêm)
a)ĐKXĐ: x > 4; \(y\ne2\)
Đặt \(\frac{1}{\sqrt{x-4}}=a;\frac{1}{y+2}=b\)
Hệ phương trình trở thành: \(\hept{\begin{cases}3a+4b=7\\5a-b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+4b=7\\20a-4b=16\end{cases}}\)
Cộng theo vế với vế của hai phương trình trong hệ,ta được: \(23a=7+16=23\Rightarrow a=1\Rightarrow b=1\)
Đến đây dễ rồi ạ.
x + y - xy = 1
=> x + y - xy - 1 = 0
=> (x - 1) + y(1 - x) = 0
=> (y - 1)(1 - x) = 0
=> \(\orbr{\begin{cases}y=1\\x=1\end{cases}}\)
Nếu x = 1
Khi đó x2 + y2 = 5
<=> 12 + y2 = 5
=> y2 = 4
=> y = \(\pm\)2
Nếu y = 1
=> x2 + y2 = 5
=> x2 + 12 = 5
=> x2 = 4
=> x = \(\pm\)2
Vậy các cặp (x;y) thỏa mãn là (1;2) ; (1;-2) ; (2;1) ; (-2;1)
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)
HPT<=>\(\hept{\begin{cases}2\left(u+v\right)+v^2+2uv+u^2=15\\u^2+v^2=5\end{cases}}\)
\(< =>\hept{\begin{cases}\left(u+v+1\right)^2=16\\u^2+v^2=5\end{cases}}\)
\(< =>\hept{\begin{cases}u+v=3\\u^2+v^2=5\end{cases}or\hept{\begin{cases}u+v=-5\\u^2+v^2=5\end{cases}}}\)
đến đến thì dễ r haaaa
\(\hept{\begin{cases}uv+u+v=5\\u^2+v^2=5\end{cases}}\)
\(u^2+v^2=\left(u+v\right)^2-2uv=\left(u+v\right)^2-2\left[5-\left(u+v\right)\right]\)
\(=\left(u+v\right)^2+2\left(u+v\right)-10=5\)
\(\Leftrightarrow\left(u+v\right)^2+2\left(u+v\right)-15=0\)
\(\Leftrightarrow\left(u+v+5\right)\left(u+v-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}u+v=-5\\u+v=3\end{cases}}\)
- \(u+v=-5\Rightarrow uv=10\)
\(u,v\)là hai nghiệm của phương trình: \(x^2+5x+10=0\)(1)
mà \(x^2+5x+10=x^2+2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{15}{4}=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\)
nên phương trình (1) vô nghiệm.
- \(u+v=3\Rightarrow uv=2\)
\(u,v\)là hai nghiệm của phương trình \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy \(\left(u,v\right)\in\left\{\left(1,2\right),\left(2,1\right)\right\}\).