Cho đa thức \(P\left(x\right)=x^4-4x^3+3x^2+2x-1\) có 2 nghiệm thực a,b thỏa mãn a+b=1. Tính ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=x^5+x^4-4x^3+x^2-x-2\)
\(=x^5-x^4-x^3+2x^4-2x^3-2x^2-x^3+x^2+x+2x^2-2x-2\)
\(=\left(x^2-x-1\right)\left(x^3+2x^2-x+2\right)\)
\(P\left(x\right)=0\Leftrightarrow\left(x^2-x-1\right)\left(x^3+2x^2-x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-1=0\left(1\right)\\x^3+2x^2-x+2=0\end{cases}}\)
Giải \(\left(1\right)\): \(x^2-x-1=0\Leftrightarrow x^2-x+\frac{1}{4}=\frac{5}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\frac{1+\sqrt{5}}{2}\\x_2=\frac{1-\sqrt{5}}{2}\end{cases}}\)
Ta thấy \(x_1+x_2=1\)do đó đây là hai nghiệm \(a,b\)thỏa mãn.
\(ab=x_1x_2=\frac{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}{2.2}=-1\).
\(x^5+x^4-4x^3+x^2-x-2=\left(x^2-x-1\right)\left(x^3+2x^2-x+2\right)\)
Phân tích đa thức thành nhân tử " tự nhân vào là ra "
\(\left(x^2-x-1\right)=0\)
\(x^3+2x^2-x+2=0\)
\(\left(x^2-x-1\right)\hept{\begin{cases}\Delta=5\\x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)
ta có
\(\frac{1}{2}+\frac{\sqrt{5}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2}=1\)
thỏa mãn a+b=1 " bài có 3 nghiệm , x3 = -1 ko thỏa mãn a+b=1) vậy chỉ lấy 2 nghiệm thôi "
\(ab=\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)+\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)=\frac{1}{4}-\frac{25}{4}=\frac{-24}{4}=-6\)
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Thay x=1/2 vào P(x): \(a+\frac{19}{16}=0\)\(\Leftrightarrow a=\frac{-19}{16}\)
Thay x=1/2 vào Q(x):\(b+\frac{9}{16}=0\Leftrightarrow b=\frac{-9}{16}\)
Cho Q(x)=x3+ax2+bx+cQ(x)=x3+ax2+bx+c. Biết Q(1)=−15,Q(2)=−15,Q(3)=−9Q(1)=−15,Q(2)=−15,Q(3)=−9 . Tìm số dư khi chia Q(x) cho (x-4)
bạn có thể giait giup mk ko
a) phương trình \(x^3-3x^2+1\) có 3 nghiệm thực phân biệt là a,b,c(đề bài). Áp dụng Định lí Vi-ét cho đa thức bậc 3 ta có:\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ac=0\\a.b.c=-1\end{matrix}\right.\)
ta có
a+b+c=3
<=>\(\left(a+b+c\right)^2=9\)
<=>\(a^2+b^2+c^2+2ab+2bc+2ac=9\)
<=>\(a^2+b^2+c^2=9\)
<=>\(\left(a^2+b^2+c^2\right)^2=81\)
<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=81\)(1)
ta có ab+bc+ac=0
<=>\(\left(ab+bc+ac\right)^2=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2-2.1.3=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2=6\)(2)
Thay (2) vào (1) ta có \(a^4+b^4+c^4+2.6=81\)
<=>\(a^4+b^4+c^4=69\)
b) \(\dfrac{a+1}{\left(b+c\right)\left(1-a\right)+1}=\dfrac{a+1}{\left(3-a\right)\left(1-a\right)+1}=\dfrac{a+1}{3+a^2-4a+1}=\dfrac{a+1}{a^2-4a+4}=\dfrac{a+1}{\left(a-2\right)^2}\)
cmtt =>\(B=\dfrac{a+1}{\left(a-2\right)^2}+\dfrac{b+1}{\left(b-2\right)^2}+\dfrac{c+1}{\left(c-2\right)^2}\)=\(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}+3\left[\dfrac{1}{\left(a-2\right)^2}+\dfrac{1}{\left(b-2\right)^2}+\dfrac{1}{\left(c-2\right)^2}\right]\)=\(\dfrac{3\left[\left(a-2\right)\left(b-2\right)\right]^2+3\left[\left(b-2\right)\left(c-a\right)\right]^2+3\left[\left(c-2\right)\left(a-2\right)\right]^2}{\left[\left(a-2\right)\left(b-2\right)\left(c-2\right)\right]^2}\)
đặt t=(a-2)(b-2);u=(b-2)(c-2);v=(c-2)(a-2) =>t+u+v=0
B thành \(\dfrac{3\left(t^2+u^2+v^2\right)}{t.u.v}\) bạn biến đổi để xuất hiện t+u+v
=>B=\(\dfrac{3\left(t+u+v\right)^2-6\left(t.u+u.v+t.v\right)}{t.u.v}=\dfrac{-6.\left(a-2\right)\left(b-2\right)\left(c-2\right)\left(a-2+b-2+c-2\right)}{t.u.v}=\dfrac{18}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)
(a-2)(b-2)(c-2)= abc-2(ab+bc+ac)+4(a+b+c)-8=12-9=3
Vậy B=3
ta có
\(P\left(x\right)=x^4-4x^3+4x^2-\left(x^2-2x+1\right)=\left(x^2-2x\right)^2-\left(x-1\right)^2\)
\(\left(x^2-3x+1\right)\left(x^2-x-1\right)=0\)
theo nguyên lí vi-et ta có \(\hept{\begin{cases}a+b=1\\a.b=-1\end{cases}}\)Vậy ab=-1