Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng:
a)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)
Áp dụng tính chất dãy tỉ số băng nhau,ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)
a)đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)a=bk, c=dk
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
từ (1),(2)\(\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
câu c bn tự giải nhé dễ mak ahihihichúc bn hc tốt
a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)
Ta có :
\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
*a/b=c/d=k=>a=bk;c=dk
Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3
Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3
=>2a+3b/2a-3b=2c+3d/2c-3d
*a/b=c/d=>a/c=b/d=k
=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)
k^2=a/c.b/d=ab/cd (2)
Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2
*a/b=c/d=>a/c=b/d=k=a+b/c+d
=>k^2=(a+b/c+d)^2
k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2
=>(a+b/c+d)^2=a^2+b^2/c^2+d^2
Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)
a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)
Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)
Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)
b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
Do đó: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases}a=bk\\c=dk\end{cases}\)
Thay vào vế trái ta có:
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)
Thay vào vế phải ta có:
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)
\(\Rightarrow VP=VT=\dfrac{2k+3}{2k-3}\Rightarrow\) Đpcm
Ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
\(\Rightarrow\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (ĐPCM)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)
\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)
=>\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c: \(\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left(\dfrac{b}{d}\right)^4\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{b^4k^4+b^4}{d^4k^4+d^4}=\dfrac{b^4}{d^4}\)
Do đó: \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số = nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)