Cho tam giác ABC có góc B = góc C. Trên tia đôí tia CB lấy D : góc CDA = góc CAD. Gọi Ax là tia đối tia ADa) Chứng minh góc BAx = 3CADb) cho góc B = 42 độ . Tính góc A , góc CAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC
a, Vì tam giác ABC cân tại A ,mà góc A =100 độ => góc B=góc C= (180 độ -góc A) : 2 = (180 độ - 100 độ ) : 2 = 80độ : 2 = 40 độ
=>Góc ACM = 40độ -20 độ = 20độ , Góc ABM = 40độ - 10 độ =30độ
Vì CE=CB (gt) => tam giác ECB cân tại C =>Góc CBE = góc CEB = (180độ-góc ECB):2 = ( 180độ - 40độ) :2 = 140độ:2 = 70 độ
Mà góc EBM +góc MBC = góc EBC => Góc EBM + 10 độ = 70 độ => gócEBM = 70độ -10độ=60độ (1)
Xét tam giác EMC và tam giác BMC có : Cạnh MC chung , Góc ECM= góc BCM , EC = BC(gt)
=> tam giác EMC = tam giác BMC => Góc CEM = góc CBM = 10độ
Lại có : góc BEM + góc MEC = góc BEC => góc BEM + 10 độ = 70 độ => góc BEM = 70 độ - 10 độ = 60độ (2)
Từ (1) và (2) suy ra tam giác BEM đều
a, vì Dx//BC =>GÓC xDA=ACB (so le trong ) . Mà xDA=70 độ =>góc ACB=70 độ
b,ta có : CAB +DAB=180 độ (KỀ BÙ) Mà CAB=40 độ
=>40 + DAB =180 => DAB=140
VÌ ; Ay là phân giác của góc BAD => DAy=BAy=BAD/2=140/2=70
mÀ xDA=70
=>xDA=DAy. 2 góc này ở vị trì so le trong =>Dx//Ay. Dx//BC =>Ay//BC
a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)
Ta có:BH cạnh chung,HM=HD
suy ra tam giác HBM= tam giác HBD (cgv-cgv)
suy ra BM=BD (2 cạnh tương ứng)
xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.
b,theo câu a góc MBC =góc DBC (2 góc tương ứng)
xét tam giác MBC và tam giác DBC
TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung
uy ra tam giác BMC= tam giác DBC(C-G-C)
suy ra góc BMC=BDC (2 góc tương ứng)
c,áp dụng định lý pytago
xét tam giác AHC có HC^2=AC^2-AH^2=10^2
suy ra HC =10
xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25
suy ra MH=7,5
suy ra tam giác HMC có diện tích là 7,5*10/2=37,5
a)Xét\(\Delta BMH\)và\(\Delta BDH\)có:
BM là cạnh chung
\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)
MH=DH(GT)
Do đó:\(\Delta BMH=\text{}\text{}\Delta BDH\)(c-g-c)
\(\Rightarrow BM=BD\)(2 cạnh t/ứ)
Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)
Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)
b)Vì\(\Delta BMH=\text{}\text{}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)
Xét\(\Delta BMC\)và\(\Delta BDC\)có:
BC là cạnh chung
\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)
BM=BD(cm câu a)
Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)
\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)
c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)
hay\(26^2=24^2+HC^2\)
\(\Rightarrow HC^2=26^2-24^2=676-576=100\)
\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)
Vì\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)
Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)
\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)
\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)
DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD