Ae giải hộ vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Chọn từ mà phần gạch chân có cách phát âm khác các từ còn lại trong mỗi câu sau.
1. A. wanted B. washed C. danced D. played
2. A. goes B. watches C. misses D. brushes
3. A. come B. mother C. open D. some
4. A. mention B. question C. action D. education
5. A. who B. when C. where D. what
6. A. missed B. washed C. called D. watched
7.A. choose B. kitchen C. chemical D. chore
8. A. my B. happy C. hobby D. factory
9.A. health B. team C. tea D. beach
10.A. sun B. fun C. put D. unhappy
11. A. mind B. bike C. tradition D. tidy
12. A. my B. happy C. hobby D. factory
II. Find the word which has different stress pattern from the others.
1.A. person B. father C. teacher D. enjoy
2. A. prefer B. enjoy C. mother D. agree
3.A. doctor B. father C. picture D. fancy (xem lại đề)
4.A. pollution B. visit C. listen D. open
5.A. depend B. advise C. affect D. listen
Gọi M là trung điểm BC thì A,G,M thẳng hàng và AG=2GM
Từ B,C vẽ 2 đường thẳng song song với EF cắt AM lần lượt tại D và N
Ta có:
\(\frac{AE}{BE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}\)
CMĐ: \(\Delta BDM=\Delta CNM\left(gcg\right)\)
=> DM=MN
Do GD+NG=DG+DG+CM+MN=(DG+DM)+(GM+MN)=2(DM+DM)=2GM=AG
Do đó
\(\frac{BE}{AE}+\frac{CF}{AF}=\frac{DG}{AG}+\frac{NG}{AG}=\frac{DG+NG}{AG}=\frac{AG}{AG}=1\)
Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)= \(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)= \(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
=> 4 = 1 + DC
=> DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có:
\(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
\(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)= \(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm
Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có:
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm
x.0 = 0
Vì số nào nhân với 0 cũng bằng 0
=> x bằng vô cực số
ab + bc + ca = abc
( a x 10 + b ) + ( b x 10 + c ) + ( c x 10 + a ) = a x 100 + b x 10 + c
a x 11 + b x 11 + c x 11 = a x 100 + b x 10 + c
b x 11 - b x 10 + c x 11 - c = a x 100 - a x 11
b + c x 10 = a x 89
=> a = 1 ; b = 9 ; c = 8
Vậy a = 1 ; b = 9 ; c = 8
TK mk nha !!