K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

đáp án 

2011,9

5 tháng 6 2019

cái chỗ suy ra P e kh hiểu lắm a chỉ e chi tiết với

6 tháng 6 2019

@Thế Vĩ@

\(P=\sqrt{2}.\frac{\sqrt{2020}-\sqrt{2}}{2}=\sqrt{2}.\frac{\sqrt{2}\left(\sqrt{1010}-1\right)}{2}=2.\frac{\sqrt{1010}-1}{2}=\sqrt{1010}-1\)

\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}\)

\(\sqrt{4+36+81}\)

\(=\sqrt{121}\)

\(=\pm11\)

20 tháng 9 2019

NGuyễn Văn Tuấn mik ko bảo bn mik bảo tth cơ

20 tháng 9 2019

tth làm sau có để thì để tên khác đi

NV
11 tháng 7 2021

Đề bài không chính xác rồi em

Muốn khử được căn ba thì trong biểu thức \(\left(2x^2-6x+2008\right)^{...}\) phải có bậc 3, mà ở đây chỉ có bậc 2

11 tháng 7 2021

Em chép nhầm đề, lẽ ra là 2x3

27 tháng 6 2021

`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`

`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`

`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`

Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`

Cộng từng vế

`=>2(x+y)=0`

`<=>S=0+2020=2020`

27 tháng 6 2021

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)

Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

\(S=x+y+2020=2020\)

11 tháng 4 2021

a, Ta có :  \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay 

\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x\)

b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0 

Đặt \(k\left(x\right)=7x^2-35x+42=0\)

\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2

10 tháng 4 2021

xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là 

\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)

bị sai mỗi thế thôi ạ mọi người giúp em với ạ

Bài làm :

\(\frac{8}{9}-\left(\frac{-1}{3}\right)^2+\left(\frac{5}{6}\right)^{2020}\times\left(\frac{6}{5}\right)^{2020}\)

\(=\frac{8}{9}-\frac{1}{9}+\left(\frac{5}{6}\times\frac{6}{5}\right)^{2020}\)

\(=\frac{7}{9}+1\)

\(=\frac{16}{9}\)

Học tốt nhé