cho x+y+z=0 . cm :x3+x2z+y2z-xyz+y3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3+x^2z-xyz+y^2z+y^3\)
\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)\)
\(=0\left(dpcm\right)\)
a) \(B=x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)
\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
Dấu bằng xảy ra khi \(x=y=0\)
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Lời giải:
a. Xét hiệu:
$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$
$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$
$\Rightarrow x^3+y^3\geq xy(x+y)$
Dấu "=" xảy ra khi $x=y$
b.
Áp dụng BĐT phần a vô:
$x^3+y^3\geq xy(x+y)$
$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$
$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$
Hoàn toàn tương tự với các phân thức còn lại suy ra:
$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D
thanks