K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến ứng với cạnh huyền BC

nên \(AP=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

b: Xét ΔABC có

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMPN có 

PN//AM

PN=AM

Do đó: AMPN là hình bình hành

mà \(\widehat{NAM}=90^0\)

nên AMPN là hình chữ nhật

c: Xét tứ giác APCE có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo PE

Do đó: APCE là hình bình hành

mà PE\(\perp\)AC

nên APCE là hình thoi

16 tháng 8 2018

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp tran cong hoai giải bài toán này.

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Đề sai rồi bạn

AM//NB mà

4 tháng 1 2020

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

23 tháng 12 2022

SDGB là S tam giác DGB pk ạ ?

1 tháng 12 2016

chịu@@@@@@@@@@@@@@@@@@

1 tháng 12 2016

cũng biết làm nhưng ko 

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.

a: Xét tứ giác BECF có

D là trung điểm chung của BC và EF

BE=EC

Do đó: BECF là hình thoi

b: Sửa đề: Tính diện tích BECF

\(BC=\sqrt{10^2-8^2}=6\left(cm\right)\)

DE=AB/2=4cm

=>EF=8cm

\(S_{BECF}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)

26 tháng 12 2021

a: Xét ΔABC có

AM/AB=AN/AC

Do đó: MN//BC

hay BMNC là hình thang

mà BN=CM

nên BMNC là hình thang cân