tìm x, bt:
a)x2-7x+10=0
b) 36x2-49=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
Vậy \(x=5\)hoặc \(x=2\)
b) \(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x=-7\\6x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{7}{6}\end{cases}}\)
Vậy \(x=\frac{-7}{6}\)hoặc \(x=\frac{7}{6}\)
a, x2-7x+10=0
<=> x2-2x-5x+10=0
<=> x.(x-2)-5.(x-2)=0
<=> (x-2).(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
b, 36x2-49=0
<=> (6x)2-72=0
<=> (6x-7).(6x+7)=0
\(\Leftrightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{7}{6}\end{cases}}\)
`a)(x-6)^2-(x+6)^2=12`
`<=>(x-6-x-6)(x-6+x+6)=12`
`<=>-12.2x=12`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2`
`b)36x^2-12x+1=81`
`<=>(6x-1)^2=81`
`<=>(6x-1-9)(6x-1+9)=0`
`<=>(6x-10)(6x+8)=0`
`<=>(3x-5)(3x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2-6x+2x-12=0`
`<=>x(x-6)+2(x-6)=0`
`<=>(x-6)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2-6x+x-6=0`
`<=>x(x-6)+x-6=0`
`<=>(x-6)(x+1)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow x^2+2xy+y^2+7x+7y=-y^2\le0\)
\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)\le0\)
\(\Leftrightarrow\left(x+y+7\right)\left(x+y\right)\le0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y+7\ge0\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y+7\le0\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y\ge-7\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y\le-7\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-7\le x+y\le1\) \(\Leftrightarrow-6\le x+y+1\le1\)
vậy \(GTNN\) của \(A\) là \(-6\) và \(GTLN\) của \(A\) là \(1\)
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
a: (2x-10)(5x+25)=0
=>2x-10=0 hoặc 5x+25=0
=>x=5 hoặc x=-5
b: (x+15)(x-2)=0
=>x+15=0 hoặc x-2=0
=>x=-15 hoặc x=2
c: =>x(x-7)=0
=>x=0 hoặc x=7
a: x^2-7x+13=0
Δ=(-7)^2-4*1*13=49-52=-3<0
=>PTVN
b: -5x^2+5x-1.25=0
=>4x^2-4x+1=0
=>(2x-1)^2=0
=>2x-1=0
=>x=1/2
d: 2x^2+3x+1=0
=>(x+1)(2x+1)=0
=>x=-1 hoặc x=-1/2
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
a)x2-7x+10=0
\(\Leftrightarrow x^2-2x-5x+10=0\)
\(\Rightarrow x\left(x-2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x=5\) hoặc \(x=2\)
b) 36x2-49=0
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Rightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}6x+7=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-7\\6x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy \(x=\dfrac{-7}{6}\) hoặc \(x=\dfrac{7}{6}\)
a) x2-7x+10=0
=> x2-2x-5x+10=0
=> x(x-2)-5(x-2)=0
=> x(x-2)=0 -> hoặc x =0 hoặc x-2=0-> x=2
hoặc -5(x-2)=0 -> x=2
vậy x= 0 hoặc x= 2
b) 36x2-49=0
=> (6x)2-72=0
=> (6x-7)(6x+7)=0
=>hoặc 6x-7=0 -> 6x=7 -> x=7:6
hoặc 6x+7=0->6x=-7-> x = 6:7
vậy x=7:6 hoặc x=6:7