Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu a/b=c/d
a. 5a+3b/5a-3b=5c+3d/5c-3d
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5.bk+3b}{5.bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5.dk+3d}{5.dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5.bk+3b}{5.bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5.dk+3d}{5.dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)