tìm x bt
a)(2x-3)^2=(x-2)^2
b) (3x+1)^2=(2x-1)^2
c) x^3+2x^2+6x+12=0
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a)\(x^2+x-x^2+2=0\)\(\Rightarrow x+2=0\)\(\Rightarrow x=-2\)
b)\(2\left(3x+2\right)-2\left(x+6\right)=0\)
\(\Rightarrow2\left(3x+2-x-6\right)=0\)
\(\Rightarrow2\left(2x-4\right)=0\)
\(\Rightarrow2x-4=0\Rightarrow x=2\)
c)\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(\Rightarrow-2x^2=0\Rightarrow x=0\)
d)\(\left(3x^2-x-2\right)-3\left(x^2-x-2\right)=4\)
\(\Rightarrow3x^2-x-2-3x^2+3x+6=4\)
\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)
Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .
1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)
\(=>A=-12x+16\)
2) \(=>B=8x^3+27-8x^3+2=29\)
3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)
4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)
5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)
\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)
\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)
6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)
k cho mik nha ,
1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x --> -2(x - 1)2 \(\le\)0 \(\forall\)x
=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1
b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30
Ta luôn có: -2(x + 3)2 \(\le\)0 \(\forall\)x
=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x
Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3
Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3
3.
a)\(x^2+15x-25=x^2+15x+56,25-81,25\)
\(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\)
Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\)
Vậy.....
b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\)
\(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\)
Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy.....
c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\)
\(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\)
Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và \(\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy......
Bài 1:
a) Ta có: \(x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2;-2\right\}\)
b) Ta có: \(\left(2x-3\right)+\left(-3x\right)-\left(x-5\right)=40\)
\(\Leftrightarrow2x-3-3x-x+5=40\)
\(\Leftrightarrow-2x+2=40\)
\(\Leftrightarrow-2x=38\)
hay x=-19
Vậy: x=-19
Bài 2:
a) Ta có: \(-45\cdot12+34\cdot\left(-45\right)-45\cdot54\)
\(=-45\cdot\left(12+34+54\right)\)
\(=-45\cdot100\)
\(=-4500\)
b) Ta có: \(43\cdot\left(57-33\right)+33\cdot\left(43-57\right)\)
\(=43\cdot57-43\cdot33+43\cdot33-33\cdot57\)
\(=43\cdot57-33\cdot57\)
\(=57\cdot\left(43-33\right)\)
\(=57\cdot10=570\)
b)x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12
<=> 3x^2 +2x +x^2+2x+1 - 4x^2 +25 +12=0
<=> 4x+38=0
=>4x= -38
=>x= -38/4= -19/2
Câu a : \(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy ........
b ) \(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left(3x+1\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=0\)
\(\Leftrightarrow5x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy.............
c ) \(x^3+2x^2+6x+12=0\)
\(\Leftrightarrow x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x\left(loại\right)\end{matrix}\right.\) Do \(x^2+6>0\)
Vậy.........
a)\(\left(2x-3\right)^2=\left(x-2\right)^2\)
\(2x-3=x-2\)
\(2x-3-x+2=0\)
\(x-1=0\)
\(x=1\)
b)\(\left(3x+1\right)^2=\left(2x-1\right)^2\)
\(3x+1=2x-1\)
\(3x+1-2x+1=0\)
\(x+2=0\)
\(x=-2\)
c)\(x^3+2x^2+6x+12=0\)
\(\left(x^3+2x^2\right)+\left(6x+12\right)=0\)
\(x^2\left(x+2\right)+6\left(x+2\right)=0\)
\(\left(x^2+6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-6\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{6}\\x=-2\end{matrix}\right.\)
Vậy \(x=-\sqrt{6}\) hoặc \(x=-2\)